

TESTING FOR THE VERIFICATION OF COMPLIANCE OF PV INVERTER WITH:

AS / NZS 4777.2:2015 GRID CONNECTION OF ENERGY SYSTEMS VIA INVERTERS (PART 2: INVERTER REQUIREMENTS)

Procedure: PE.T-LE-62

Test Report Number: 2220-0288

Trademark...... 5 & FAR

Tested Model HYD 15KTL-3PH

HYD 8KTL-3PH, HYD 10KTL-3PH,

HYD 20KTL-3PH.

APPLICANT

Name...... Shenzhen SOFAR SOLAR Co., Ltd.

XingDong Community, XinAn Street, BaoAn District, Shenzhen

Machael Zog

City, Guangdong Province, P.R. China

TESTING LABORATORY

Name...... SGS Tecnos, S.A. (Electrical Testing Laboratory)

28042 MADRID (Spain)

Conducted (tested) by Michael Tong

(Project Engineer)

Approved by Jacobo Tevar

(Technical Reviewer)

Date of issue 16/09/2020

Number of pages 171

Important Note:

- This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.
- Unless otherwise stated the results shown in this test report refer only to the sample(s) tested as
 received. Information of derived or extension models of the range as provided by the
 applicant, (if any), is included in this report only for informative purposes. The Company SGS
 shall not be liable for any incorrect results arising from unclear, erroneous, incomplete, misleading or
 false information provided by Client. This document cannot be reproduced except in full, without
 prior written approval of the Company

Test Report Historical Revision:

Test Report Version	Date	Resume
2220-0288	16/9/2020	First issuance

SGS

Report N. 2220-0288

AS/NZS 4777.2:2015.

INDEX

1	SCOPE		5
2	GENERAL I	NFORMATION	6
	2.1	Testing Period and Climatic conditions	6
	2.2	Equipment under Testing	6
	2.3	Test equipment list	.10
	2.4	Measurement uncertainty	.10
	2.5	Test set up of the different standard	.11
	2.6	Definitions	.12
3	RESUME O	F TEST RESULTS	.13
4	TEST RESU	JLTS	.15
	4.1	Reference Network Impedance	
	4.2	Electrical Safety	
	4.3	Provision for External Connections	
	4.4	PV Array earth fault / earth leakage detection	
	4.5	Compatibility with Electrical Installation	
	4.6	Power Factor	
	4.7	Voltage quality measurements	.21
	4.7.1	Current harmonics	.21
	4.7.2	Voltage harmonics	.25
	4.8	Flickers in continuous operation	.30
	4.9	Transient Voltage Limits	.36
	4.10	D.C. current injection	
	4.11	Current Balance for Three – Phase Inverters	
	4.12	Operational Modes and Multiple Mode Inverters	
	4.12.1	Inverter Demand Response Modes (DRMs)	
	4.12.2	Test for standard operation of generator demand response modes	
	4.12.3	Interaction with demand response enabling device (DRED)	
	4.13	Inverter Power Quality Response Modes	
	4.13.1 4.13.2	Volt Response Modes Fixed Power Factor Mode and Reactive Power Mode	
	4.13.2	Characteristics Power Factor Curve for Cos φ (Power Response)	
	4.13.4	Power rate limit	
	4.14	Multiple mode inverter operation	
	4.14.1	Sinusoidal output in stand-alone mode	
	4.14.2	Volt-watt response mode for charging of energy storage	.84
	4.15	Security of operational settings	.88
	4.16	Automatic Disconnection Device	.88
	4.17	Active Anti-Islanding protection	
	4.17.1	Test A	
	4.17.2	Test B	
	4.17.3	Test C	
	4.18	Voltage and Frequency Limits (Passive Anti-Islanding Protection)	
	4.18.1 4.18.2	Voltage trip tests	
	4.10.2	Sustained Operation for Voltage Variations	
	4.19.1	Voltage trip value tests	
	4.19.2	Trip time test	
	4.20	Sustained Operation for Frequency Variations	
	4.20.1	Response to an increase in frequency	
	4.20.2	Response to a decrease in grid frequency	
	4.21	Disconnection on external signal	
	4.22	Connection and Reconnection Procedure	
	4.22.1	Frequency Connection	140
	4.22.2	Frequency Reconnection	

SGS

Report N. 2220-0288

Page 4 of 171

6	ELECTRIC.	AL SCHEMES	171
5	PICTURES		162
		· · · · · · · · · · · · · · · · · · ·	
	4.25	Inverter Marking and Documentation	157
	4.24	Multiple Inverter Combination	156
	4.23	Security of Protection Settings	
	4.22.4	Voltage Reconnection	
	4.22.3	Voltage Connection	

Page 5 of 171

AS/NZS 4777.2:2015.

1 SCOPE

SGS Tecnos, S.A. (Electrical Testing Laboratory) has been contract by Shenzhen SOFAR SOLAR Co., Ltd, in order to perform the testing according the AS/NZS 4777.2: 2015: Grid connection of energy systems via inverters. Part 2: Inverter requirements.

For the purpose of this test report, it is to be used for the certification for Australia only, but further tests having settings for New Zealand (Volt – Watt Response Mode, Frequency trip tests, Volt – watt response mode for charging of energy storage and Sustained operation for voltage variations) have just been included for information purposes.

2 GENERAL INFORMATION

2.1 Testing Period and Climatic conditions

The necessary testing has been performed between the 3rd of June to the 9th of September of 2020.

All the tests and checks have been performed at $25 \pm 5^{\circ}$ C, $96 \text{ kPa} \pm 10 \text{ kPa}$ and $50\% \text{ RH} \pm 10\% \text{ RH}$.

SITE TEST

XingDong Community, XinAn Street, BaoAn District, Shenzhen City, Guangdong Province, P.R. China

2.2 Equipment under Testing

Apparatus type Hybrid Inverter

Installation: Fixed (permanent connection)

Manufacturer Shenzhen SOFAR SOLAR Co., Ltd.

Trade mark...... 5 FAR

 Model / Type reference
 HYD 15KTL-3PH

 Serial Number
 SP1ES020H71002

Software Version...... ARM Software Version: V2.00

MAIN DSP Software Version: D010136 Slave DSP Software Version: D010134

Maximum.

Battery side: 180-800Vdc, 25/25Ad.c. Maximum for both

charging and discharging.

AC output: 230/400Vac; 50/60Hz; 21.7Aa.c. Rated (*), 24Aa.c. Maximum; 15000W Rated, 16500VA Maximum. AC back-up: 230/400Vac, 50/60Hz, 24Aa.c. Maximum,

16500VA Maximum.

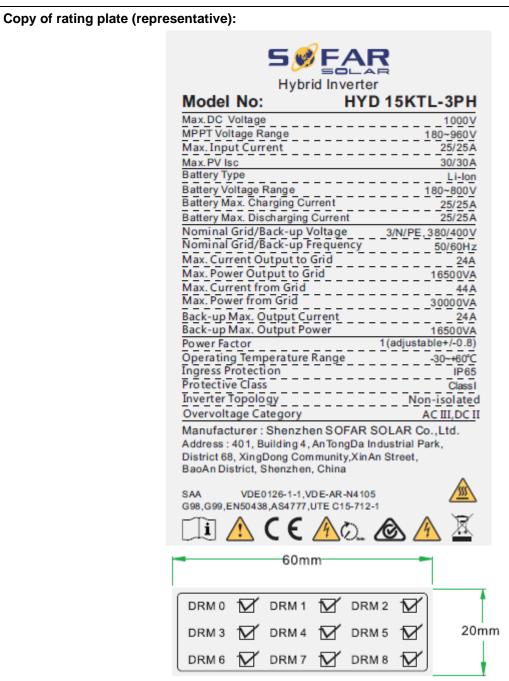
(*) The rated output current is calculated using rated voltage

and rated power.

Date of manufacturing: 2020

Test item particulars

Input PV, AC and Batteries


Type of connection to the main supply: Three phase – Fixed installation

10KTL-3PH); Heatsink:(Model HYD-8KTL-3PH, HYD-6KTL-

3PH, HYD-5KTL-3PH)

Modular No Internal Transformer No

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation.
- 3. Labels of other models are as the same with HYD 15KTL-3PH's except the parameters of rating.

Equipment under testing:

- HYD 15KTL-3PH

The variants models are:

- HYD 5KTL-3PH
- HYD 6KTL-3PH
- HYD 8KTL-3PH
- HYD 10KTL-3PH
- HYD 20KTL-3PH

Model Number	HYD 5KTL- 3PH	HYD 6KTL- 3PH	HYD 8KTL- 3PH	HYD 10KTL- 3PH	HYD 15KTL- 3PH	HYD 20KTL- 3PH	
	Battery Input Data						
Battery Voltage Range		180V-800V					
Battery Voltage Range for full load	200V~800V	240V~800V	320V~800V	200V~800V	300V~800V	400V~800V	
Nominal charging/discharging Power	10000W	15000W	20000W	10000W	15000W	20000W	
Max. charging/discharging Current		25A			50A(25A/25A)		
		PV Input					
Max. DC Voltage				V00			
MPPT Voltage Range			180-96	0Vd.c.			
Full power MPPT Voltage Range	250V~850V	320V~850V	360V~850V	220V~850V	350V~850V	450V~850V	
Max. Input Current	12.5A/12.5 A	12.5A/12.5 A	12.5A/12.5 A	25A/25A	25A/25A	25A/25A	
Max. Short Current	15A/15A	15A/15A	15A/15A	30A/30A	30A/30A	30A/30A	
	Α	C Output Data	a (On-grid)				
Max. AC Output Current	8Aa.c.	10Aa.c.	13Aa.c.	16Aa.c.	24Aa.c.	32Aa.c.	
Nominal Grid Voltage	3/N/PE, 230/400Vac						
Nominal Grid Frequency				Hz	1		
AC Output Rated Power	5000W	6000W	W0008	10000W	15000W	20000W	
Max AC Output Power	5500VA	6600VA	8800VA	11000VA	16500VA	22000VA	
Power Factor				o 0.8 lagging			
		C Output Data			T		
Nominal Output Power	5000W	6000W	8000W	10000W	15000W	20000W	
Max. Output Power	5500VA	6600VA	8800VA	11000VA	16500VA	22000VA	
Max. Output Current	8A	10A	13A	16A	24A	32A	
Nominal Grid Voltage	3/N/PE, 230/400Vac						
Nominal Grid Frequency	Nominal Grid Frequency 50Hz General Data						
Ambient Temperature		General	<i>-</i> 30°C	~60°C			
Ingress Protection			IP	65			
Protective Class			Cla				

Page 9 of 171

AS/NZS 4777.2:2015.

The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology
- Same control algorithm.
- Output power within $1/\sqrt{10}$ and 2 times of the rated output power or the EUT or Modular inverters.
- Same Firmware Version.

The values presented in the following table have been used for calculation of referenced values (p.u.; %) thought the report if not otherwise indicated.

Reference	ce Values
Rated power, Pn in W	15000
Rated apparent power, Sn in VA	15000
Maximum apparent power, Smax in VA	16500
Rated wind speed (only WT), vn in m/s	N/A
Rated current (determined), In in A	21.7
Rated output voltage, (phase to phase) Un in Vac	230

Note: In this report p.u. values are calculated as follows:

- -For Active & Reactive Power p.u. values, are referenced to Pn.
- -For Currents p.u. values, the reference is always In.
- -For Voltages p.u. values, the reference is always Un.

The results obtained apply only to the particular sample tested that is the subject of the present test report. The most unfavorable result values of the verifications and tests performed are contained herein.

Throughout this report a point (comma) is used as the decimal separator.

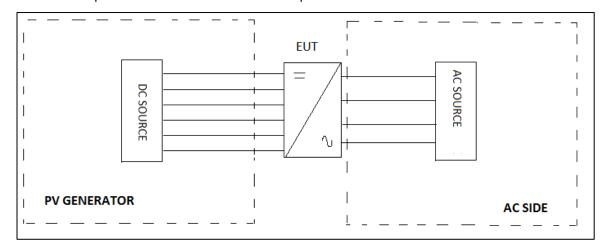
2.3 Test equipment list

From	No.	Equipment Name	Model No.	Equipment No.	Calibration Date	Equipment calibration due date
	1 Power analyzer		ZLG/PA5000H	C820290908 2002110001	2020/03/02	2021/03/01
	2	Power analyzer	ZLG/PA3000	PA3004- P0004-1422	2020/01/14	2021/01/13
	3	Voltage probe	SanHua / SI- 9110	152627	2020/01/14	2021/01/13
	4 Volta	Voltage probe	SanHua / SI- 9110	111134	2020/01/14	2021/01/13
olar	5	Voltage probe	SanHua / SI- 9110	111152	2020/01/14	2021/01/13
Sofarsolar	6	Current probe	CYBERTEK / CP1000A	C181000922	2020/01/14	2021/01/13
0)	7	Current probe	CYBERTEK / CP1000A	C181000925	2020/01/14	2021/01/13
	8	Current probe	CYBERTEK / CP1000A	C181000929	2020/01/14	2021/01/13
	9	Oscilloscope	KEYSIGHT / DS0X3014A	MY58101647	2020/01/14	2021/01/13
	10	Temperature & Humidity meter	Anymeters / TH101B	ZB-WSDJ- 001	2020/01/14	2021/01/13
Ses	11	True RMS Multimeter	Fluke / 187	GZE012-8	2019/12/05	2020/12/04

Note: all measurement equipment was used inside their corresponding calibration period. Copy of all calibration certificates are available at the laboratory for reference.

2.4 Measurement uncertainty

Associated uncertainties through measurements showed in this this report are the maximum allowable uncertainties.


Magnitude	Uncertainty
Voltage measurement	±1.5 %
Current measurement	±2.0 %
Frequency measurement	±0.2 %
Time measurement	±0.2 %
Power measurement	±2.5 %
Phase Angle	±10
Temperature	±3° C

Note1: Measurements uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the solicitant.

Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.

2.5 Test set up of the different standard

Below is the simplified construction of the test set up.

Tests requiring batteries were performed using a DC source simulating the behaviour of the battery.

Different equipment has been used to take measures as it shows in chapter 2.3. Current and voltage clamps have been connected to the inverter input/output for all the tests.

All the tests described in the following pages have used this specified test setup.

The test bench used includes:

EQUIPMENT	MARK/ MODEL	RATED CHARACTERISTICS	OWNER / ID.CODE
AC source	Kwell / AFG-S- 33800	Voltage: 0-600 V 750KVA	Sofarsolar / EP-026
PV source	Kwell / TVS- 630kW	Voltage: 0 - 1000 V 630kW	Sofarsolar / EP-027

Page 12 of 171

AS/NZS 4777.2:2015.

2.6 Definitions

EUT	Equipment Under Testing	Hz	Hertz
Α	Ampere	V	Volt
VAr	Volt-Ampere reactive	W	Watt
Un	Nominal Voltage	In	Nominal current
Pn	Nominal Active Power	Sn	Nominal Apparent Power
Qn	Nominal Reactive Power	p.u	Per unit
V1+	Voltage Positive Sequence	l1+	Current Positive Sequence
V1-	Voltage Negative Sequence	I1-	Current Negative Sequence
Uv	Voltage Imbalance	Ui	Current Imbalance
DRM	Demand Response Mode	THD	Total Harmonic Distortion
I_h	Harmonic Current	U_h	Harmonic Voltage
PST	Severity of Flicker Short-Term	PLT	Severity of Flicker Long-Term
dc	Maximum Variation of Voltage	d(t)	Variation of Voltage
DRED	Demand Response Enabling	d max	Maximum Absolute Value of
	Device		Voltage Variation

AS/NZS 4777.2:2015.

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

STANDARD	STANDARD REQUIREMENTS	RESULT	
SECTION	AS/NZS 4777.2:2015		
A.5	Reference network impedance	Р	
	Network impedance	Р	
5	General Requirements	Р	
5.1	Electrical safety	N/R (*)	
5.2	Provision for External Connections	P	
5.3	PV Array earth fault/earth leakage detection	N/R (*)	
5.4	Compatibility with electrical installation	P	
5.5	Power Factor	Р	
5.6	Harmonics		
	Harmonics Current	Р	
	Harmonics Voltage	Р	
5.7	Flickers	Р	
5.8	Transient voltage limits	Р	
5.9	DC Current Injection	Р	
5.10	Current Balance for Three-phase inverters	Р	
6	Operational modes and Multiple mode inverters	Р	
6.2	Inverter Demand Response Modes (DRMs)	Р	
6.2.1	General	Р	
6.2.2	Interaction with Demand Response Enabling Device (DRED)	Р	
6.3	Inverter Power quality response modes	Р	
6.3.2	Volt response modes	Р	
6.3.2.2	Volt-Watt response mode	Р	
6.3.2.3	Volt-Var response mode	Р	
6.3.2.4	Voltage balanced modes	Р	
6.3.3	Fixed power factor mode and reactive power mode	Р	
6.3.4	Characteristics power factor curve for cos ϕ (P) (Power response)	Р	
6.3.5	Power rate limit	Р	
6.3.5.3.3	Changes in a.c. operation and control	Р	
6.3.5.3.4	Changes in energy source operation	Р	
6.4	Multiple mode inverter operation	Р	
6.4.2	Sinusoidal output in stand-alone mode (Harmonics voltage)	Р	
6.4.3	Volt-Watt response mode for charging of energy storage	Р	
6.5	Security	Р	
7	Protective functions for connection to electrical installations and the grid	Р	
7.2	Automatic disconnection device	Р	
7.3	Active Anti-Islanding protection	Р	
7.4	Voltage and frequency limits (passive anti-islanding protection)	Р	
7.5	Limits for sustained operation.	Р	
7.5.2	Sustained operation for voltage variations	Р	
7.5.3	Sustained operation for frequency variations	Р	
7.5.3.1	Response to an increase in frequency	Р	
	Response to a decrease in frequency	Р	
7.5.3.2	Response to a decrease in grid frequency with energy storage	Р	

STANDARD	STANDARD REQUIREMENTS	DECLUT
SECTION	AS/NZS 4777.2:2015	RESULT
7.6	Disconnection on external signal	Р
7.7	Connection and reconnection procedure	Р
7.8	Security of protection settings	Р
8	Multiple inverter combination	N/A
8.2	Inverter current balance across multiple phases	N/A
8.3	Grid Disconnection	N/A
8.4	Grid Connection and Reconnection	N/A
8.5.1	Single-phase combinations	N/A
8.5.2	Single-phase inverters used in three-phase combinations	N/A
8.5.3	Required Tests for Multiple Inverter Combination	N/A
8.5.4	Multiple Inverters with one Automatic Disconnection Device	N/A
9	Inverter marking and documentation	Р

- (*) The compliances with these requirements are stated in the following test reports:
 - IEC 62109-1 and IEC 62109-2: test report no BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.
 - IEC 62040-1: test report no BL-DG2060127-B02 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

Page 15 of 171

AS/NZS 4777.2:2015.

4 TEST RESULTS

4.1 REFERENCE NETWORK IMPEDANCE

The network reference impedance used during the tests has been of:

 $R_A = 0.15$ Ohms; $X_A = j 0.15$ Ohms at 50 Hz; $R_N = 0.10$ Ohms; $X_N = j 0.10$ Ohms at 50 Hz.

4.2 ELECTRICAL SAFETY

As required per the Clause 5.1 of the standard, inverters for use in energy systems with photovoltaic (PV) arrays, the inverters shall comply with the appropriate electrical safety requirements.

The compliances with these requirements are stated in the following test reports:

- IEC 62109-1 and IEC 62109-2: test report n
 ^o BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.
- IEC 62040-1: test report no BL-DG2060127-B02 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.

4.3 Provision for External Connections

The inverter complies with the requirements according to Clause 5.2 of the standard.

4.4 PV ARRAY EARTH FAULT / EARTH LEAKAGE DETECTION

The compliances with these requirements are stated in the following test reports:

• IEC 62109-1 and IEC 62109-2: test report no BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.

Page 16 of 171

AS/NZS 4777.2:2015.

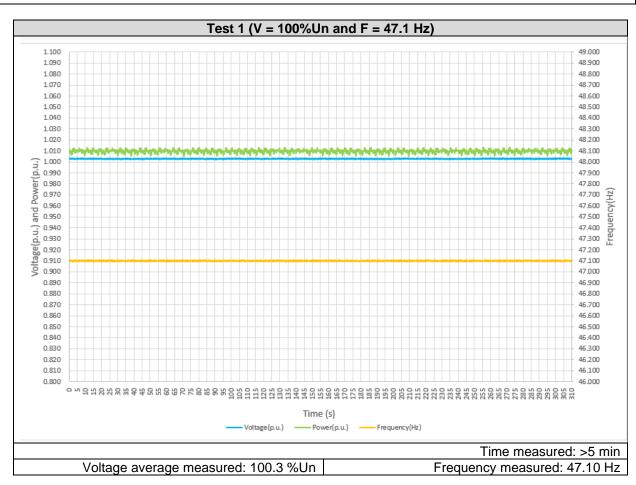
4.5 COMPATIBILITY WITH ELECTRICAL INSTALLATION

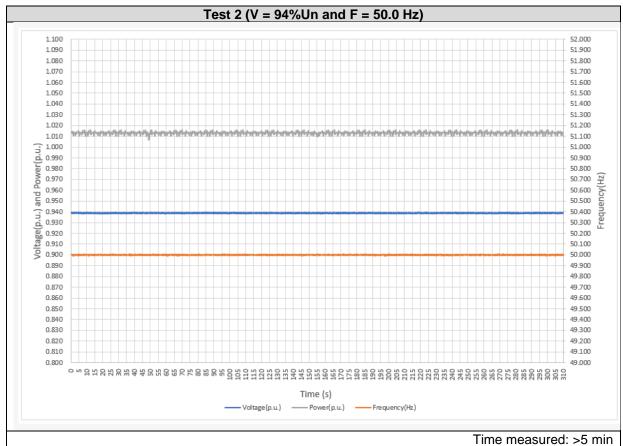
According to the requirements stated in the clause 5.4 of the standard, it has been verified that the inverter is able to operate with AC voltage and frequency limits specified in AS 60038 (for Australia).

The inverter shall stay connected providing the maximum of its available active power working in abnormal voltage and/or frequency conditions.

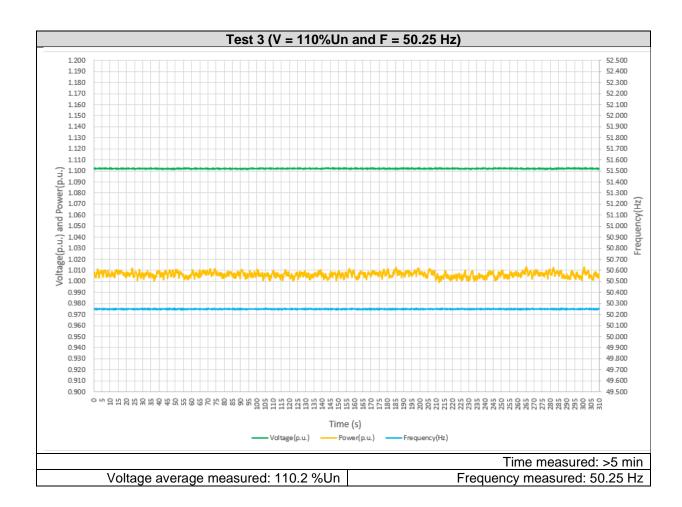
The following tables show the results of the tests performed:

Test 1		est 1	Under Frequency			
	Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured	
	100%Un	47.1Hz	101.0%Pn	Continuous Operation	> 5 min	
Disconnection		nnection		NO □ YES		


T	est 2	Under Voltage		
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured
94%Un	50.0Hz	101.3%Pn	Continuous Operation	> 5 min
Disco	nnection	⊠ NO □ YES		


Te	est 3	Over Voltage + Over Frequency		
Voltage	Frequency	Active Power measured	Minimum Operation	Time
voitage	rrequericy	Active i ower measured	Time	measured
110%Un	50.25Hz	100.6%Pn	Continuous Operation	> 5 min
Disco	nnection	⊠ NO □ YES		

Note: The measured value of active power is calculated as the average of the samples taken each 200 ms during the corresponding measured time.


Frequency measured: 50.00 Hz

AS/NZS 4777.2:2015.

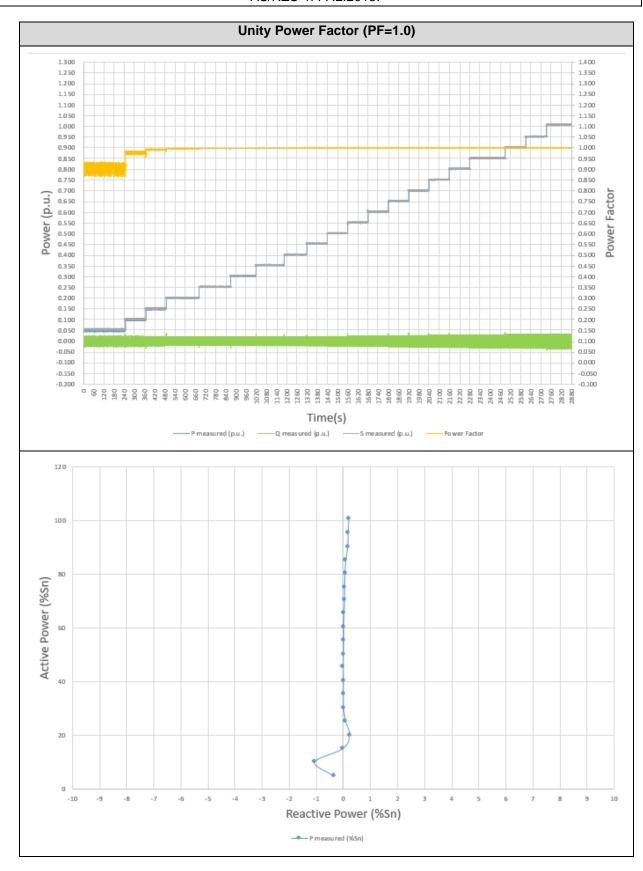
Voltage average measured: 93.9 %Un

4.6 POWER FACTOR

The power factor has been measured according to Clause 5.5 and the annex B of the standard, with an initial power factor at unity.

As the inverter is capable of different power factor settings, the test has been repeated varying the power factor within the range 0.8 leading to 0.8 (*) lagging.

(*) 0.8 leading to 0.8 lagging is more restrictive than 0.95 as the standard required. Refer to point 4.13.2.2 for test results.


The maximum tolerance allowed for the measured Power Factor is \pm 0.01, for measurements from 25%Sn.

The following table and graphs show test results for measurements of power factor set to unity (PF=1):

	Unity Power Factor (PF=1.0)						
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor Measured (cos φ)	Power Factor Desired (cos φ)	Power Factor Deviation (cos φ)		
5	4.9	-0.3	0.914	1.000	-0.086 (*)		
10	10.0	-1.1	0.980	1.000	-0.020 (*)		
15	15.1	0.0	0.992	1.000	-0.008		
20	20.2	0.2	0.996	1.000	-0.004		
25	25.3	0.1	0.997	1.000	-0.003		
30	30.4	0.0	0.998	1.000	-0.002		
35	35.4	0.0	0.998	1.000	-0.002		
40	40.3	0.0	0.999	1.000	-0.001		
45	45.4	0.0	0.999	1.000	-0.001		
50	50.3	0.0	0.999	1.000	-0.001		
55	55.2	0.0	0.999	1.000	-0.001		
60	60.3	0.0	0.999	1.000	-0.001		
65	65.3	0.0	0.999	1.000	-0.001		
70	70.2	0.1	0.999	1.000	-0.001		
75	75.2	0.1	0.999	1.000	-0.001		
80	80.3	0.1	0.999	1.000	-0.001		
85	85.2	0.1	1.000	1.000	+0.000		
90	90.2	0.2	1.000	1.000	+0.000		
95	95.2	0.2	1.000	1.000	+0.000		
100	100.7	0.2	1.000	1.000	+0.000		

^(*) It is allowed that the maximum tolerance for the measured Power Factor is outside \pm 0.01, for measurements below 25%Sn.

4.7 VOLTAGE QUALITY MEASUREMENTS

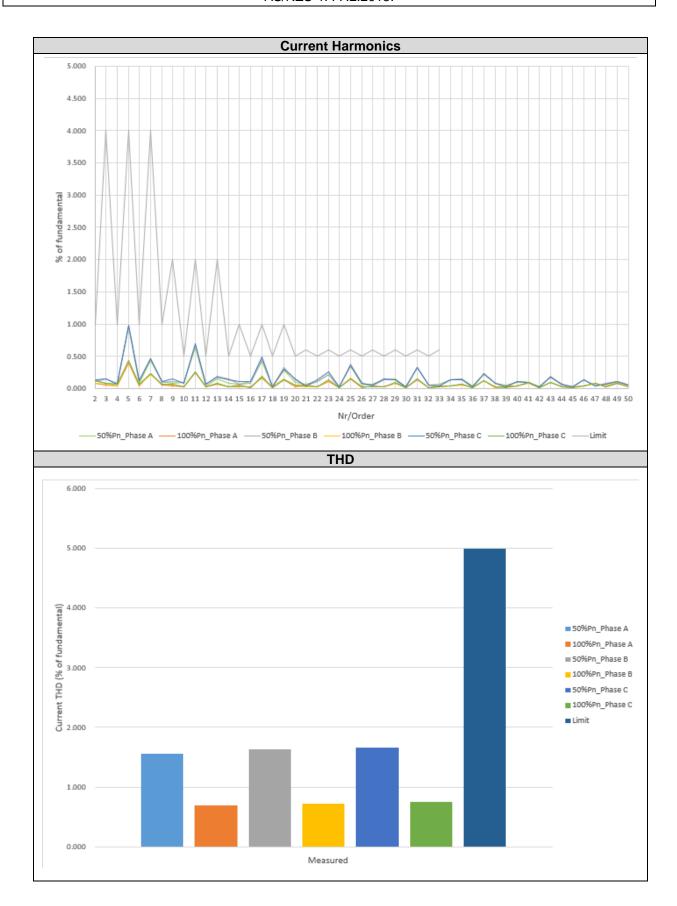
4.7.1 Current harmonics

The current harmonics have been measured according to the Clause 5.6 of the standard, at the required power values.

		50% of rated	50% of rated	50% of rated
	Limit	current (Phase A)	current (Phase B)	current (Phase C)
Eliminate order	% of fundamental	% of fundamental	% of fundamental	% of fundamental
2	1.000	0.128	0.113	0.131
3	4.000	0.077	0.146	0.155
4	1.000	0.073	0.077	0.063
5	4.000	0.955	0.968	0.978
6	1.000	0.085	0.126	0.124
7	4.000	0.438	0.457	0.457
8	1.000	0.114	0.101	0.104
9	2.000	0.078	0.112	0.143
10	0.500	0.093	0.092	0.082
11	2.000	0.634	0.675	0.698
12	0.500	0.047	0.069	0.068
13	2.000	0.150	0.187	0.180
14	0.500	0.082	0.150	0.136
15	1.000	0.074	0.063	0.115
16	0.500	0.108	0.088	0.115
17	1.000	0.418	0.448	0.497
18	0.500	0.027	0.024	0.029
19	1.000	0.293	0.332	0.300
20	0.500	0.094	0.141	0.155
21	0.600	0.061	0.045	0.046
22	0.500	0.114	0.111	0.134
23	0.600	0.222	0.217	0.254
24	0.500	0.026	0.018	0.026
25	0.600	0.351	0.378	0.358
26	0.500	0.056	0.083	0.082
27	0.600	0.068	0.044	0.048
28	0.500	0.132	0.135	0.147
29	0.600	0.146	0.133	0.141
30	0.500	0.034	0.018	0.030
31	0.600	0.321	0.330	0.329
32	0.500	0.050	0.052	0.061
33	0.600	0.067	0.037	0.042
34		0.131	0.131	0.140
35		0.154	0.148	0.143
36		0.038	0.015	0.026
37		0.215	0.226	0.230
38		0.087	0.076	0.082
39		0.051	0.025	0.028
40		0.097	0.108	0.110
41		0.099	0.100	0.090
42		0.021	0.016	0.020
43		0.177	0.186	0.171
44		0.058	0.059	0.062
45		0.028	0.022	0.025
46		0.133	0.133	0.138
47		0.042	0.045	0.046

SGS

Report N. 2220-0288


	Limit	50% of rated current (Phase A)	50% of rated current (Phase B)	50% of rated current (Phase C)
Eliminate order	% of fundamental	% of fundamental	% of fundamental	% of fundamental
48		0.065	0.077	0.070
49		0.103	0.106	0.104
50		0.054	0.053	0.051
THD	5.000	1.556	1.628	1.663

	Limit	100% of rated current (Phase A)	100% of rated current (Phase B)	100% of rated current (Phase C)
Eliminate order	% of fundamental	% of fundamental	% of fundamental	% of fundamental
2	1.000	0.089	0.088	0.126
3	4.000	0.048	0.063	0.087
4	1.000	0.047	0.044	0.067
5	4.000	0.400	0.426	0.431
6	1.000	0.040	0.060	0.067
7	4.000	0.230	0.214	0.230
8	1.000	0.048	0.066	0.070
9	2.000	0.041	0.049	0.065
10	0.500	0.033	0.028	0.030
11	2.000	0.241	0.256	0.264
12	0.500	0.024	0.028	0.025
13	2.000	0.074	0.083	0.089
14	0.500	0.021	0.032	0.023
15	1.000	0.029	0.041	0.051
16	0.500	0.021	0.015	0.018
17	1.000	0.168	0.180	0.196
18	0.500	0.016	0.021	0.017
19	1.000	0.135	0.147	0.137
20	0.500	0.033	0.038	0.053
21	0.600	0.037	0.032	0.049
22	0.500	0.025	0.022	0.024
23	0.600	0.109	0.120	0.132
24	0.500	0.012	0.014	0.013
25	0.600	0.154	0.161	0.155
26	0.500	0.016	0.027	0.025
27	0.600	0.041	0.031	0.032
28	0.500	0.032	0.031	0.031
29	0.600	0.082	0.082	0.095
30	0.500	0.011	0.010	0.010
31	0.600	0.142	0.148	0.145
32	0.500	0.012	0.016	0.018
33	0.600	0.038	0.024	0.021
34		0.037	0.038	0.037
35		0.064	0.057	0.070
36		0.012	0.009	0.009
37		0.124	0.128	0.129
38		0.019	0.019	0.024
39		0.036	0.023	0.014
40		0.037	0.038	0.038
41		0.091	0.076	0.090
42		0.011	0.009	0.009
43		0.089	0.100	0.099
44		0.030	0.026	0.030
45		0.026	0.017	0.014

Page 23 of 171

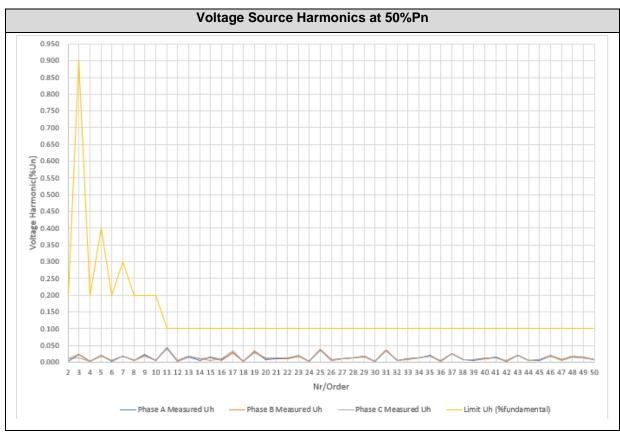
	Limit	100% of rated current (Phase A)	100% of rated current (Phase B)	100% of rated current (Phase C)
Eliminate order	% of fundamental	% of fundamental	% of fundamental	% of fundamental
46		0.041	0.046	0.042
47		0.085	0.076	0.082
48		0.030	0.035	0.031
49		0.087	0.091	0.087
50		0.025	0.023	0.025
THD	5.000	0.688	0.718	0.750

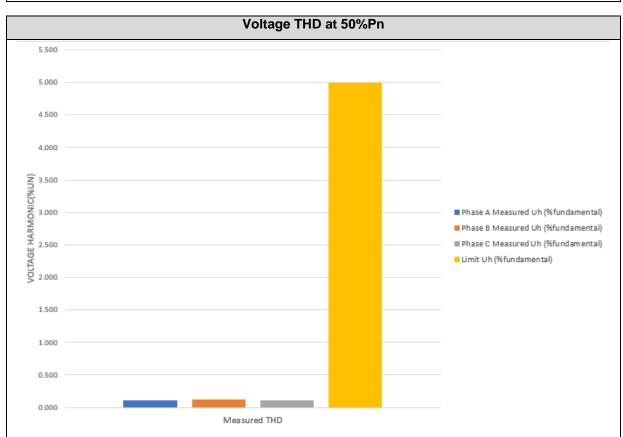
4.7.2 Voltage harmonics

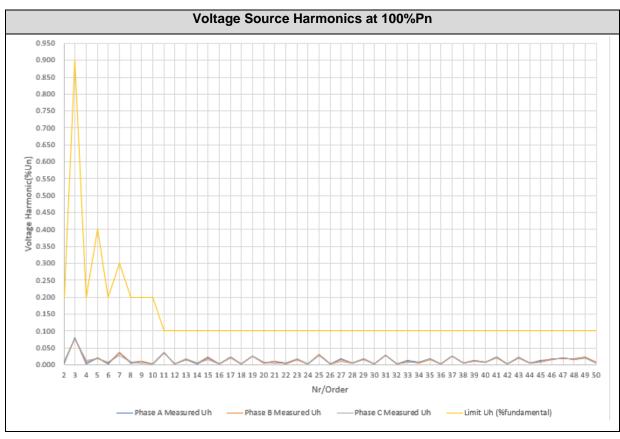
The background voltage harmonics have been verified according to the Clause 5.6 (Appendix C) of the standard, into AC terminals of the grid source.

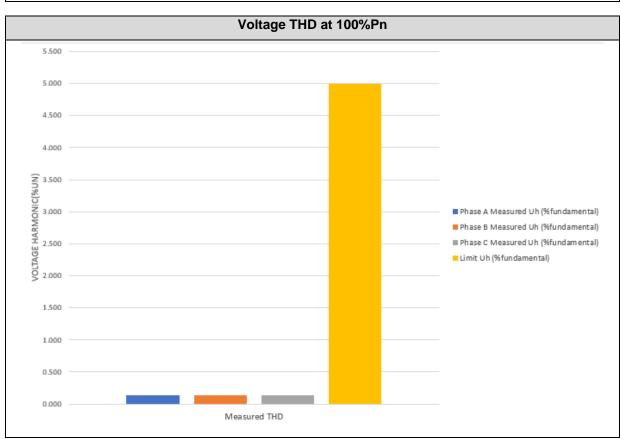
The test results are shown in the graphic and the table below.

	Voltage Source Harmonics at 50%Pn						
Nr/Order	Limit U _h (%fundamental)	Phase A Measured U _h (%fundamental)	Phase B Measured Uh (%fundamental)	Phase C Measured Uh (%fundamental)			
2	0.200	0.003	0.009	0.011			
3	0.900	0.022	0.024	0.013			
4	0.200	0.003	0.003	0.004			
5	0.400	0.020	0.018	0.021			
6	0.200	0.003	0.004	0.006			
7	0.300	0.018	0.018	0.018			
8	0.200	0.006	0.006	0.006			
9	0.200	0.022	0.021	0.017			
10	0.200	0.006	0.005	0.005			
11	0.100	0.041	0.043	0.043			
12	0.100	0.003	0.005	0.004			
13	0.100	0.015	0.018	0.017			
14	0.100	0.006	0.010	0.009			
15	0.100	0.015	0.013	0.006			
16	0.100	0.008	0.006	0.009			
17	0.100	0.030	0.030	0.034			
18	0.100	0.003	0.003	0.003			
19	0.100	0.031	0.033	0.029			
20	0.100	0.007	0.010	0.012			
21	0.100	0.010	0.012	0.012			
22	0.100	0.010	0.010	0.012			
23	0.100	0.019	0.017	0.021			
24	0.100	0.003	0.002	0.003			
25	0.100	0.037	0.038	0.036			
26	0.100	0.004	0.007	0.006			
27	0.100	0.010	0.011	0.010			
28	0.100	0.013	0.012	0.014			
29	0.100	0.019	0.017	0.018			
30	0.100	0.003	0.002	0.004			
31	0.100	0.035	0.035	0.034			
32	0.100	0.005	0.005	0.005			
33	0.100	0.009	0.009	0.008			
34	0.100	0.013	0.013	0.014			
35	0.100	0.020	0.019	0.019			
36	0.100	0.003	0.003	0.004			
37	0.100	0.026	0.026	0.026			
38	0.100	0.008	0.007	0.007			
39	0.100	0.006	0.007	0.007			
40	0.100	0.011	0.011	0.012			
41	0.100	0.014	0.014	0.013			
42	0.100	0.003	0.003	0.004			
43	0.100	0.020	0.021	0.020			
44	0.100	0.006	0.006	0.006			
45	0.100	0.006	0.007	0.007			
46	0.100	0.019	0.020	0.019			
47	0.100	0.007	0.007	0.006			


Voltage Source Harmonics at 50%Pn					
Nr/Order	Limit U _h (%fundamental)	Phase A Measured U _h (%fundamental)	Phase B Measured Uh (%fundamental)	Phase C Measured Uh (%fundamental)	
48	0.100	0.016	0.018	0.017	
49	0.100	0.014	0.014	0.014	
50	0.100	0.009	0.009	0.008	
THD((%fundamental)	5.000	0.114	0.117	0.114	


Voltage Source Harmonics at 100%Pn						
Nr/Order	Limit U _h (%fundamental)	Phase A Measured U _h (%fundamental)	Phase B Measured Uh (%fundamental)	Phase C Measured Uh (%fundamental)		
2	0.200	0.004	0.009	0.011		
3	0.900	0.080	0.077	0.077		
4	0.200	0.003	0.007	0.014		
5	0.400	0.022	0.021	0.018		
6	0.200	0.003	0.005	0.007		
7	0.300	0.036	0.036	0.029		
8	0.200	0.004	0.007	0.007		
9	0.200	0.009	0.010	0.005		
10	0.200	0.003	0.004	0.003		
11	0.100	0.036	0.037	0.037		
12	0.100	0.003	0.003	0.004		
13	0.100	0.015	0.017	0.017		
14	0.100	0.003	0.004	0.004		
15	0.100	0.020	0.023	0.015		
16	0.100	0.003	0.002	0.003		
17	0.100	0.023	0.020	0.024		
18	0.100	0.003	0.003	0.003		
19	0.100	0.026	0.026	0.027		
20	0.100	0.005	0.006	0.008		
21	0.100	0.010	0.009	0.005		
22	0.100	0.004	0.004	0.004		
23	0.100	0.017	0.016	0.018		
24	0.100	0.002	0.003	0.002		
25	0.100	0.028	0.030	0.029		
26	0.100	0.003	0.004	0.004		
27	0.100	0.017	0.016	0.010		
28	0.100	0.006	0.005	0.006		
29	0.100	0.018	0.015	0.017		
30	0.100	0.002	0.002	0.002		
31	0.100	0.028	0.028	0.029		
32	0.100	0.002	0.003	0.003		
33	0.100	0.014	0.011	0.008		
34	0.100	0.007	0.006	0.007		
35	0.100	0.018	0.015	0.017		
36	0.100	0.003	0.003	0.003		
37	0.100	0.025	0.026	0.026		
38	0.100	0.004	0.004	0.005		
39	0.100	0.014	0.012	0.010		
40	0.100	0.007	0.007	0.008		
41	0.100	0.024	0.021	0.024		
42	0.100	0.003	0.003	0.003		
43	0.100	0.020	0.022	0.022		
44	0.100	0.006	0.005	0.006		
45	0.100	0.013	0.010	0.009		

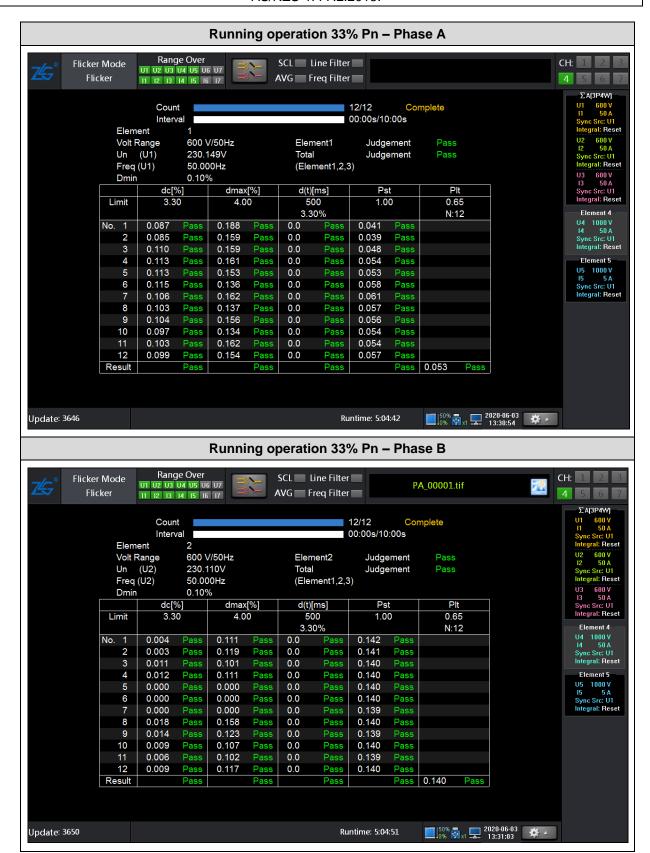


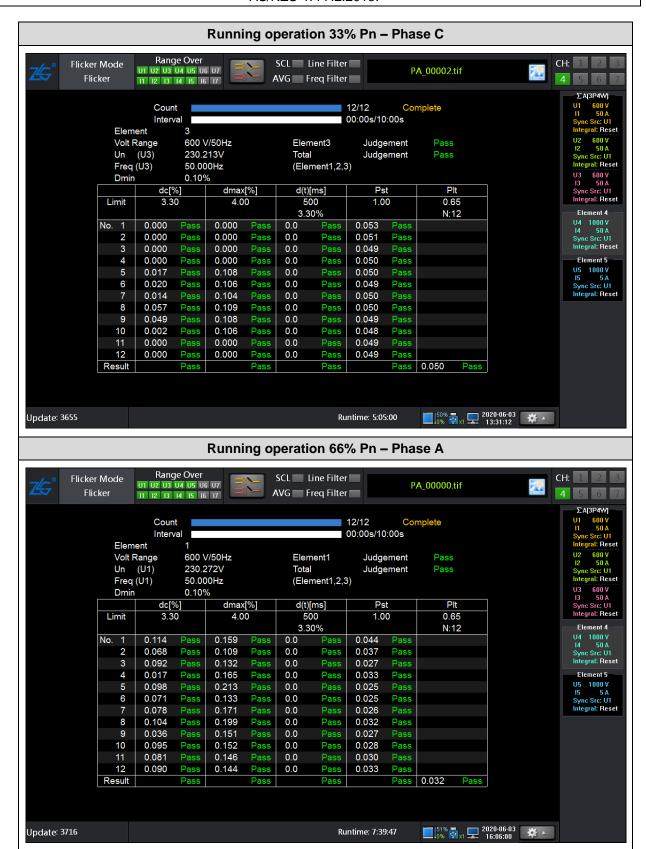

Page 27 of 171

Voltage Source Harmonics at 100%Pn						
Nr/Order	Limit U _h (%fundamental)	Phase A Measured U _h (%fundamental)	Phase B Measured Uh (%fundamental)	Phase C Measured Uh (%fundamental)		
46	0.100	0.015	0.017	0.016		
47	0.100	0.022	0.019	0.020		
48 0.100		0.015	0.018	0.016		
49 0.100		0.021	0.022	0.022		
50 0.100		0.006	0.007	0.006		
THD((%fundamental)	5.000	0.135	0.133	0.131		

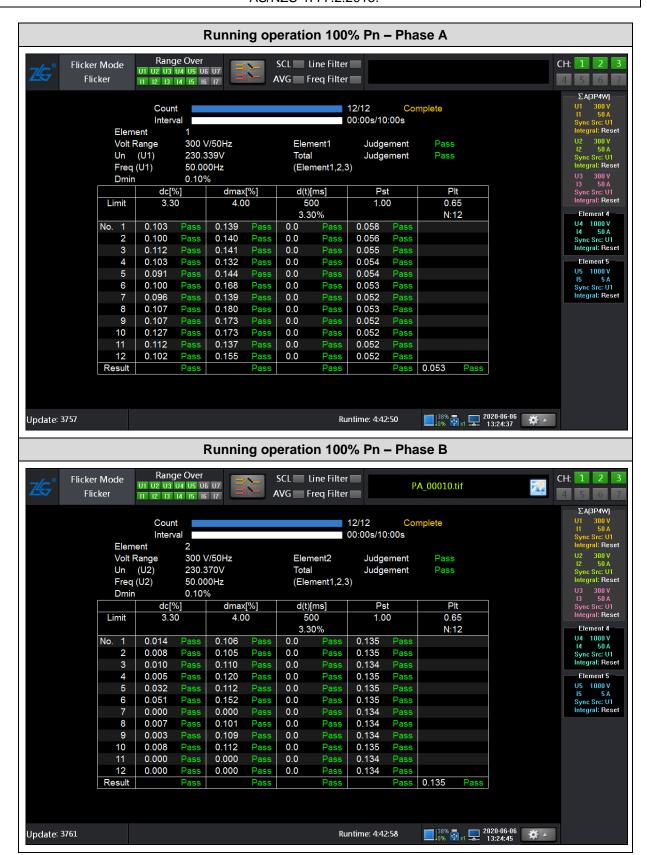
4.8 FLICKERS IN CONTINUOUS OPERATION

Measurements of voltage fluctuations in continuous operation have been measured according to the Clause 5.7 of the standard.

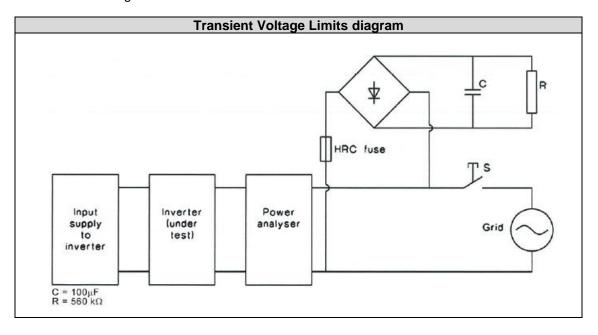

Limits considered are: 1.0 for Pst, 0.65 for Plt, 3.3% for dc and 4% for dmax measurements, according to the standard IEC 61000-3-11: 2017.


Test Results for Phase A					
Pn(%)	Limit	33 %	66 %	100 %	
PST	≤ 1.0	0.061	0.044	0.058	
PLT	≤ 0.65	0.053	0.032	0.053	
dc [%]	≤ 3.30	0.115	0.114	0.127	
dmax [%]	4	0.188	0.213	0.180	

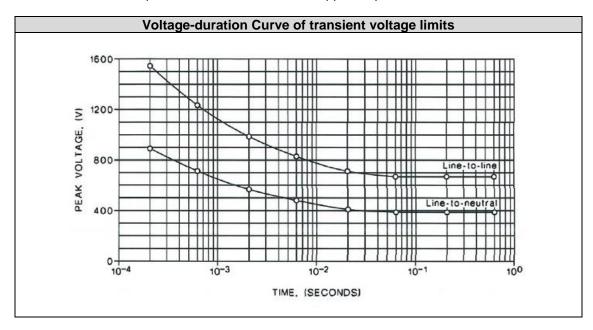
Test Results for Phase B					
Pn(%)	Limit	33 %	66 %	100 %	
PST	≤ 1.0	0.142	0.139	0.135	
PLT	≤ 0.65	0.140	0.137	0.135	
dc [%]	≤ 3.30	0.018	0.011	0.051	
dmax [%]	4	0.158	0.119	0.152	


Test Results for Phase C					
Pn(%)	Limit	33 %	66 %	100 %	
PST	≤ 1.0	0.053	0.048	0.043	
PLT	≤ 0.65	0.050	0.046	0.041	
dc [%]	≤ 3.30	0.057	0.020	0.000	
dmax [%]	4	0.109	0.108	0.000	

As it can be seen in the next screenshots, this test has 12 steps. The values took of Pst, Plt, dc and dmax are the most unfavorable of the 12 steps.



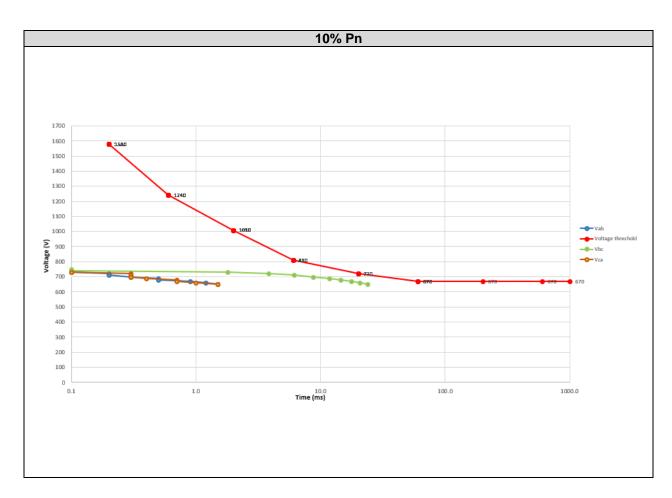
4.9 TRANSIENT VOLTAGE LIMITS


The purpose of this test is to verify that the inverter complies with the transient voltage limits specified below when the grid is disconnected from the inverter.

The transient voltage limits have been measured according to the Clause 5.8 of the standard and it has been used the following circuit:

The resistor value per phase (R) has been calculated according to standard AS/NZS 4777.2:2015:

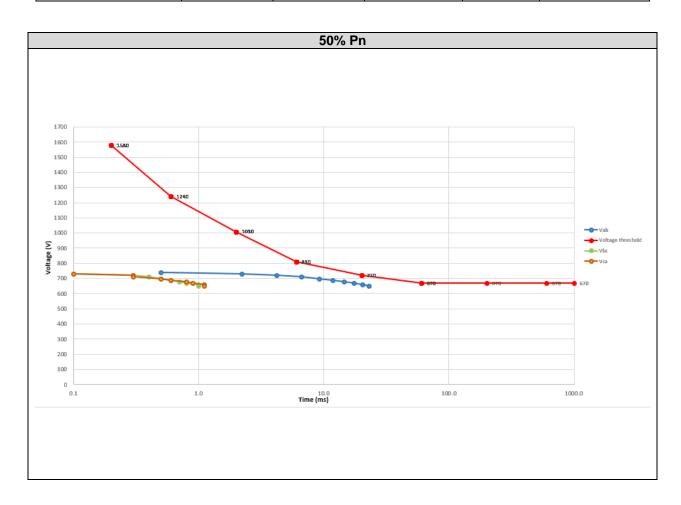
- The resistor is equivalent to 0.1% of the rated apparent power of the inverter.



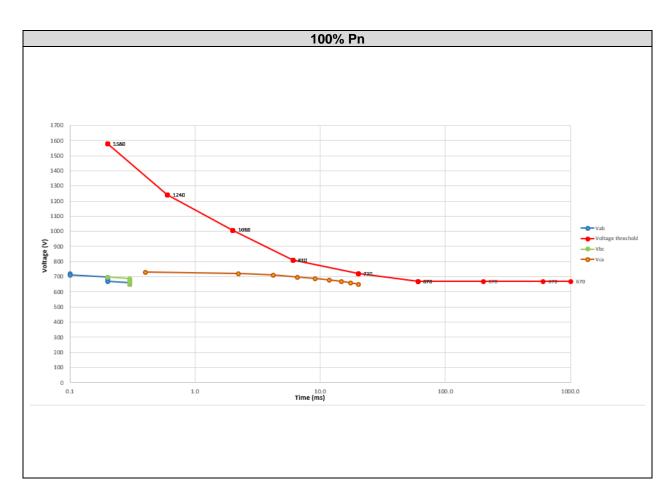
Page 37 of 171

AS/NZS 4777.2:2015.

Measurements have been verified at three different active power levels, 10 %Pn, 50 %Pn and 100 %Pn. Test results are offered in following pages.

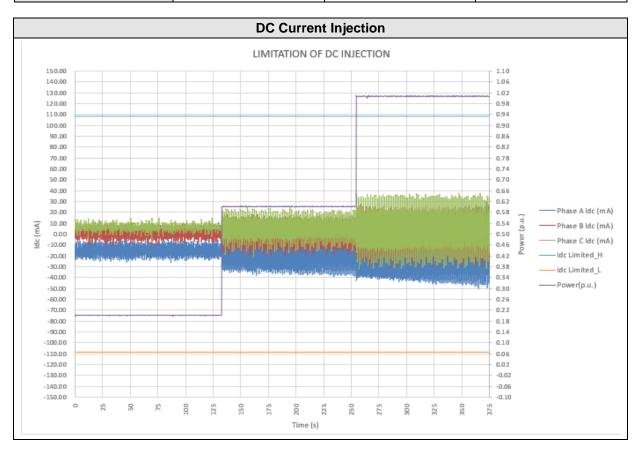

	Overvoltage value measured (V) at 10% Pn						
Demotion (a)		Threshold Time (ms)					
Duration (s)	Phase A - B	Phase B - C	Phase A - C	Limit	RESULT		
0.0002	0	0	0	±1580	Р		
0.0006	0	0	0	±1240	Р		
0.002	0	0	0	±1010	Р		
0.006	0	2	0	±810	Р		
0.02	1	15	1	±720	Р		
0.06	2	24	2	±670	Р		
0.2	2	24	2	±670	Р		
0.6	2	24	2	±670	Р		

Page 38 of 171


	Overvoltage value measured (V) at 50% Pn						
Duration (a)		Threshold	Time (ms)		DECLUT		
Duration (s)	Phase A - B	Phase B - C	Phase A - C	Limit	RESULT		
0.0002	0	0	0	±1580	Р		
0.0006	0	0	0	±1240	Р		
0.002	0	0	0	±1010	Р		
0.006	2	0	0	±810	Р		
0.02	15	1	1	±720	Р		
0.06	23	1	1	±670	Р		
0.2	23	1	1	±670	Р		
0.6	23	1	1	±670	Р		

Page 39 of 171

	Overvoltage value measured (V) at 100% Pn						
Duration (a)		Threshold	Time (ms)		RESULT		
Duration (s)	Phase A - B	Phase B - C	Phase A - C	Limit	KESULI		
0.0002	0	0	0	±1580	Р		
0.0006	0	0	0	±1240	P		
0.002	0	0	0	±1010	P		
0.006	0	0	0	±810	Р		
0.02	0	0	12	±720	Р		
0.06	0	0	20	±670	Р		
0.2	0	0	20	±670	Р		
0.6	0	0	20	±670	Р		



4.10 D.C. CURRENT INJECTION

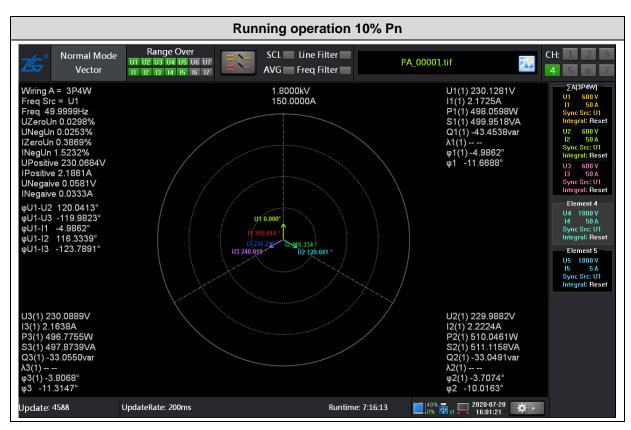
The verification of DC component emission is required according to the clause 5.9 of the standard, at the specified active power levels.

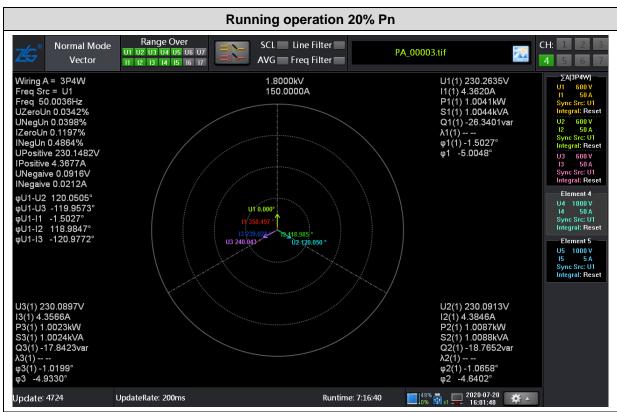
	Min ~ 20%Pn	Medium ~ 60%Pn	Max ~ 100%Pn
Inverter Current Setting (A)	13.0	39.1	65.1
Inverter Current Measured (A)	13.2	39.2	65.5
Phase A Max. Test value (mA)	-26	-38	-51
Phase B Max. Test value (mA)	-11	-20	-30
Phase C Max. Test value (mA)	15	25	37
Limited (mA)	108.5	108.5	108.5
Compliance	Pass	Pass	Pass

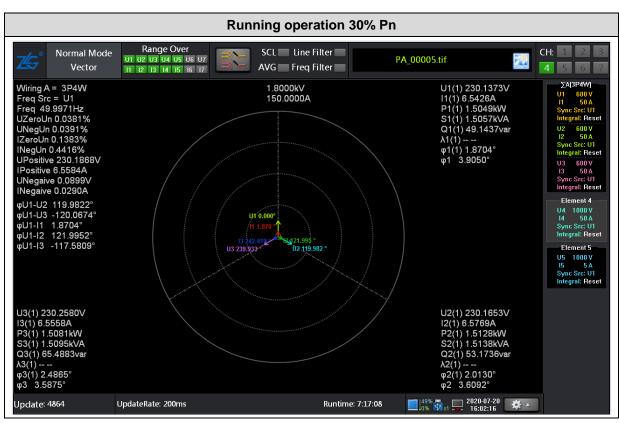
4.11 CURRENT BALANCE FOR THREE - PHASE INVERTERS

The verification of Current Balance test has been measured according to the clause 5.10 of the standard.

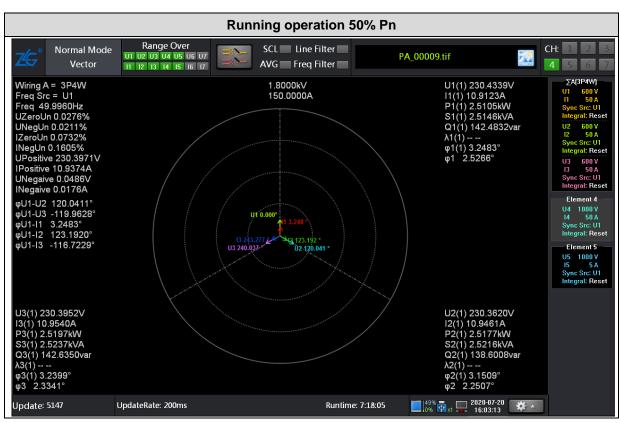

It has been determined the unbalance between positive and negative sequences for voltages and currents (U_i) using following equation:

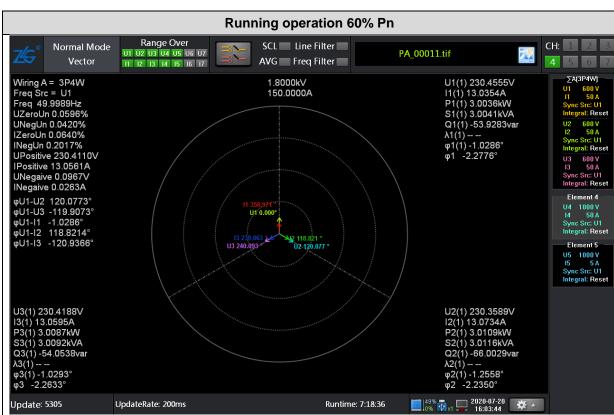

 U_i for voltage= $(U_{1-}/U_{1+})\cdot 100 \%$

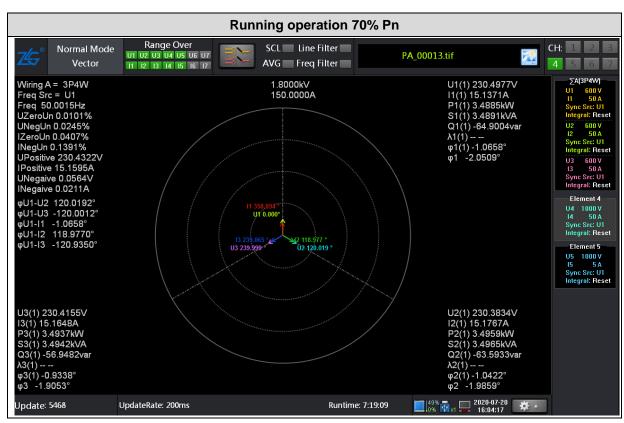

 U_i for current= $(I_{1-} / I_{1+}) \cdot 100 \%$

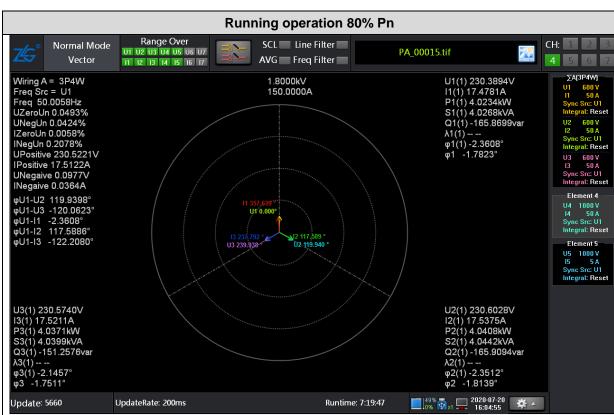

Test results represented in the table below are calculated and they represent the maximum unbalance.

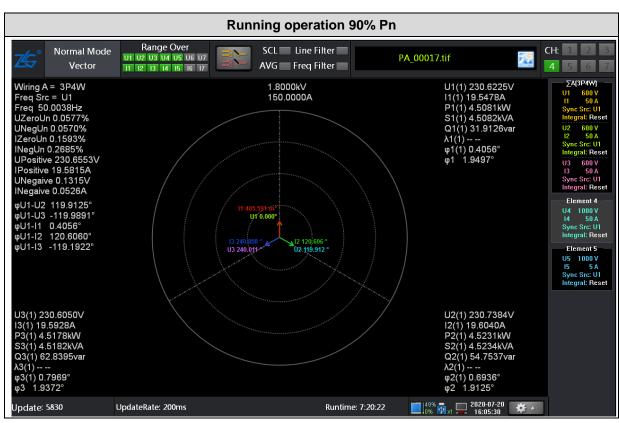
P _n (%Sn)	V ₁₊ (V)	V ₁₋ (V)	I ₁₊ (A)	I ₁₋ (A)	Ui for voltage (%)	U _i for current (%)
0	230.038	0.091	0.630	0.001	0.04	0.22
10	230.068	0.058	2.186	0.033	0.03	1.52
20	230.148	0.092	4.368	0.021	0.04	0.49
30	230.187	0.090	6.558	0.029	0.04	0.44
40	230.248	0.121	8.741	0.033	0.05	0.37
50	230.397	0.049	10.937	0.018	0.02	0.16
60	230.411	0.097	13.056	0.026	0.04	0.20
70	230.432	0.056	15.160	0.021	0.02	0.14
80	230.522	0.098	17.512	0.036	0.04	0.21
90	230.655	0.132	19.582	0.053	0.06	0.27
100	230.592	0.227	21.870	0.061	0.10	0.28

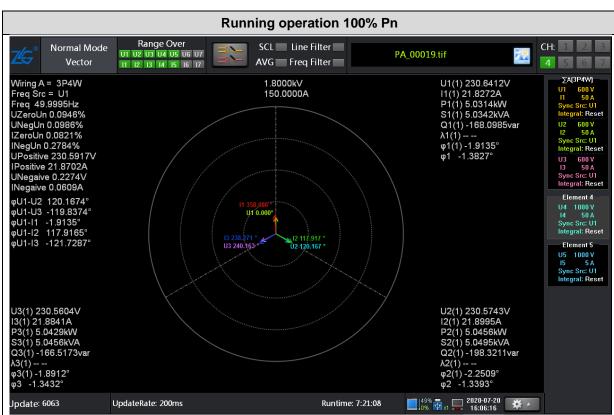


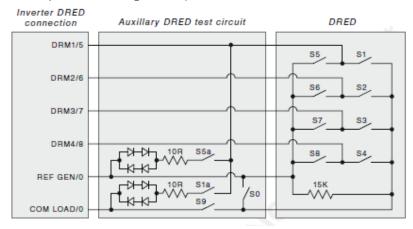






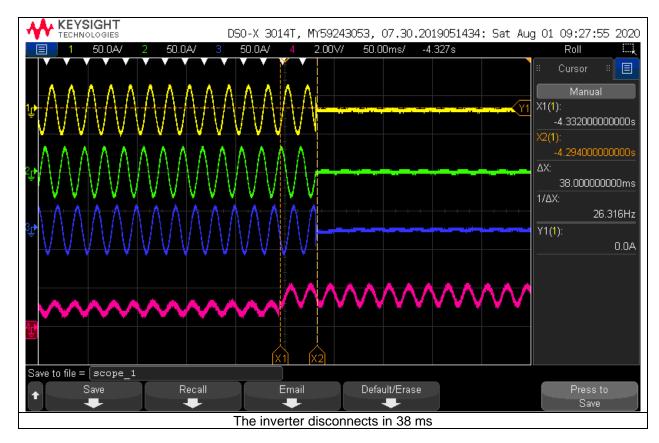




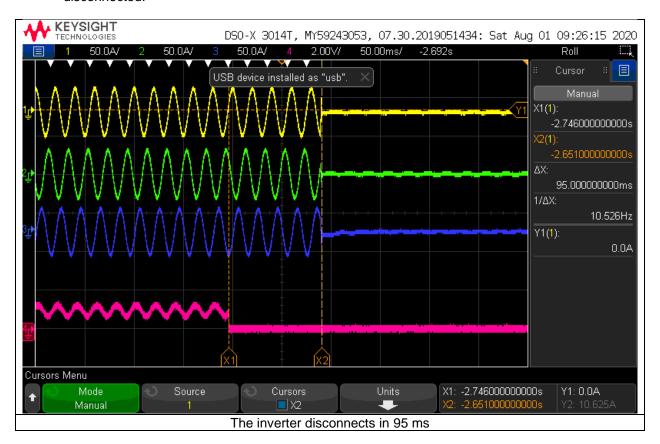


4.12 OPERATIONAL MODES AND MULTIPLE MODE INVERTERS

4.12.1 Inverter Demand Response Modes (DRMs)


The inverter demand response mode DRM 0 has been tested according to Clause 6.2.1 of the standard. The inverter shall detect and initiate a response to the demand response commands within 2 s.

The DRED (Demand Response Enabling Device) connection circuit used for this test is:



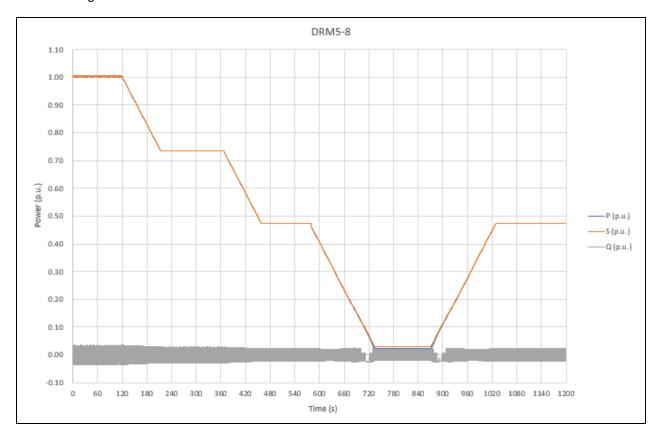
The test procedure followed has been the same as specified in the point I.2 of the standard and it is described in the following points together with test results:

a) With S9 switched closed and the inverter operating at 100% ± 5% of its rated current output, if the DRED switch S0 is asserted the unit shall disconnect.

 After reconnection disconnecting again signal S0, the switch S9 was open again and the inverter disconnected.

4.12.2 Test for standard operation of generator demand response modes

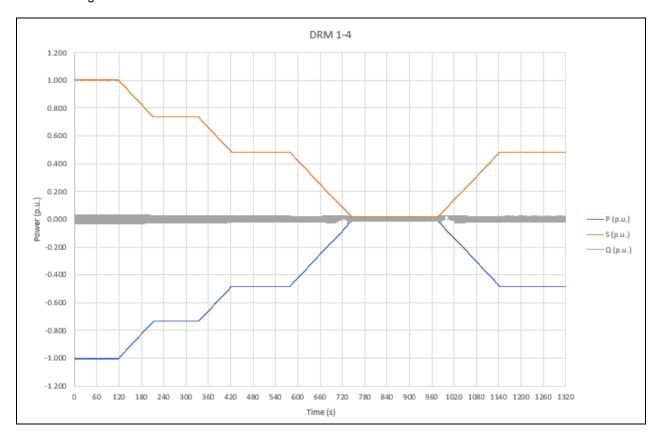
The marking is showing as below:


The procedure for discharging shall be as follows:

- (a) All DRM signals shall be removed and the input supply or inverter set-point shall be varied until the a.c. output of the inverter equals $100\% \pm 5\%$ of its rated current output.
- (b) DRED switch S7 shall be asserted and DRM 7 response assessed over a period of 2 s in accordance.
- (c) DRED switch S6 shall be asserted and simultaneous DRM 6 and DRM 7 response assessed over a period of 2 s in accordance.
- (d) DRED switch S7 shall be opened and DRM 6 response assessed over a period of 2 s in accordance

- (e) DRED switch S5 shall be asserted and DRM 5 response assessed in accordance.
- (f) All DRM signals shall be removed and the input supply or inverter set-point shall be varied until the a.c. output of the inverter equals 50±5% of the inverter's rated current output and is in a state able to respond to DRM 8.
- (g) DRED switch S8 shall be opened and DRM 6 response assessed over a period of 2 s in accordance.

The following is the test result:


Note: Whether the slope drops or rises, the default value is 16.7%

The procedure for charging shall be as follows:

- (a) All DRM signals shall be removed and the input supply or inverter set-point shall be varied until the a.c. output of the inverter equals $100\% \pm 5\%$ of its rated current output.
- (b) DRED switch S3 shall be asserted and DRM 3 response assessed over a period of 2 s in accordance.
- (c) DRED switch S2 shall be asserted and simultaneous DRM 2 and DRM 3 response assessed over a period of 2 s in accordance.
- (d) DRED switch S3 shall be opened and DRM 2 response assessed over a period of 2 s in accordance
- (e) DRED switch S1 shall be asserted and DRM 1 response assessed in accordance.
- (f) All DRM signals shall be removed and the input supply or inverter set-point shall be varied until the a.c. output of the inverter equals 50±5% of the inverter's rated current output and is in a state able to respond to DRM 4.

(g) DRED switch S4 shall be opened and DRM 4 response assessed over a period of 2 s in accordance.

The following is the test result:

Note: Whether the slope drops or rises, the default value is 16.7%

4.12.3 Interaction with demand response enabling device (DRED)

The inverter shall have a means of connecting to a DRED. This means of connection shall include a terminal block or RJ45 socket. The terminal block or RJ45 socket shall comply with the minimum electrical specifications in Table 6. The terminal block or RJ45 socket may be physically mounted in the inverter or in a separate device that remotely communicates with the inverter.

RJ45 provided. No tests needed.

4.13 Inverter Power Quality Response Modes

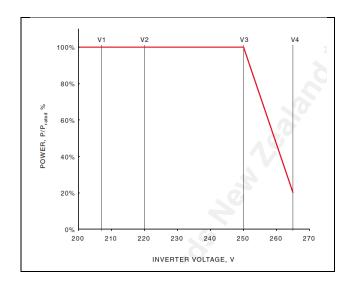
The inverter power quality response modes tests have been measured according to Clause 6.3 of the standard.

The different operating modes available in the inverter and evaluated are the following:

- -Volt response modes.
- -Fixed power factor or reactive power mode.
- -Power response mode.
- -Power rate limit.

4.13.1 Volt Response Modes

Volt response modes tests have been measured according to Clause 6.3.2 of the standard. The voltage values applied for the tests of the Clauses 6.3.2.2, 6.3.2.3 and 6.3.2.4 are the following:

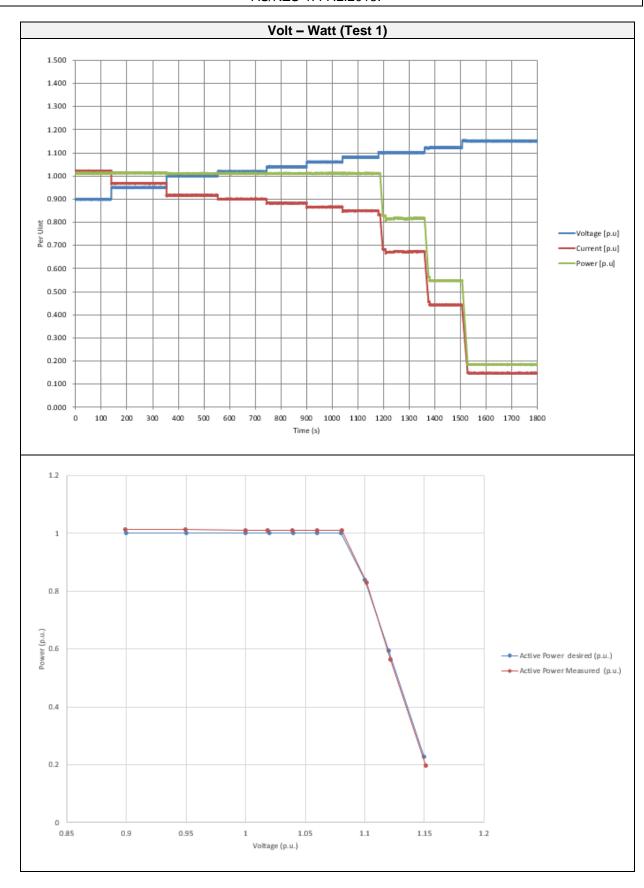

Reference	Australia. default value (V)	New Zealand. default value (V)	Range (V)
V1	207	207	Not applicable
V2	220	220	216 to 230
V3	250	244	235 to 255
V4	265	255	244 to 265

4.13.1.1 Volt - Watt Response Mode

Volt – Watt Response Mode has been measured according to Clauses 6.3.2.2 (PV Systems) at the required voltage and power points of operation.

The volt-watt response mode varies the output power of the inverter in response to the abnormal voltage at its terminal.

The curve required for volt-watt response mode for PV systems is defined by the picture below according to point 6.3.2.2 of the standard.

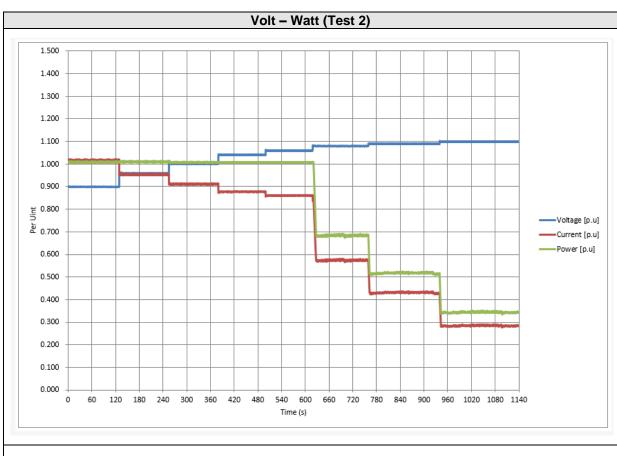

Two different tests have been performed to verify that the inverter volt-watt response is in accordance with the standard. These two curves tested prove also that volt-watt control function is configurable to different curves:

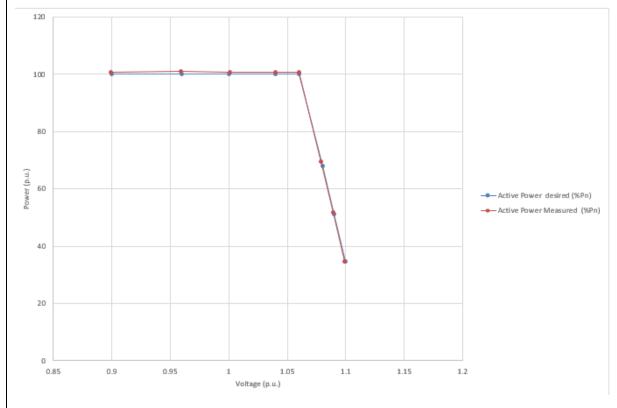
The setting values for voltage and power in the inverter have been the following:

Reference	Test 1 (for Au	ustralia setting)	Test 2 (for New Zealand setting)		
Reference	Volt. (V)	Power (%Pn)	Volt. (V)	Power (%Pn)	
V1	207	100	207	100	
V2	220	100	220	100	
V3	250	100	244	100	
V4	265	20	255	20	

4.13.1.1.1 Test 1 (for Australia setting)

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90.0	89.9	100.0	101.2	1.2
95.0	95.0	100.0	101.3	1.3
100.0	100.0	100.0	101.0	1.0
102.0	101.9	100.0	101.0	1.0
104.0	103.9	100.0	101.1	1.1
106.0	106.0	100.0	101.1	1.1
108.0	108.0	100.0	101.1	1.1
110.0	110.1	84.0	83.0	-1.0
112.0	112.2	59.5	56.2	-3.3
115.0	115.1	22.7	19.8	-2.9

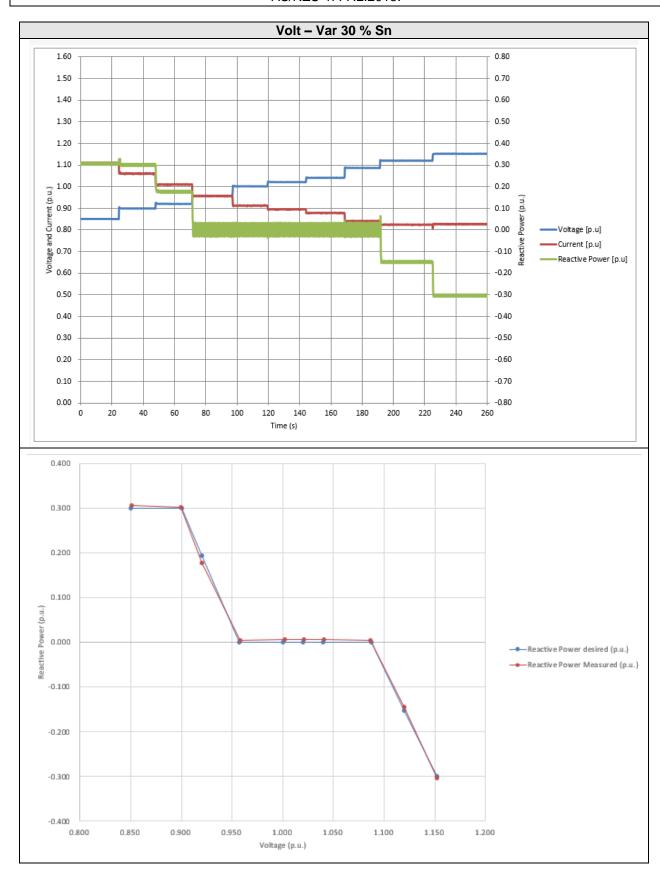



Page 54 of 171

AS/NZS 4777.2:2015.

4.13.1.1.2 Test 2 (for New Zealand setting)

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90.0	89.9	100.0	100.8	0.8
96.0	95.9	100.0	101.0	1.0
100.0	100.1	100.0	100.7	0.7
104.0	104.0	100.0	100.8	0.8
106.0	106.0	100.0	100.8	0.8
108.0	107.9	68.0	69.6	1.6
109.0	108.9	51.3	51.9	0.6
110.0	109.9	34.5	34.5	0.0



4.13.1.2 Volt -Var Response Mode

Volt – Var Response Mode has been measured according to Clause 6.3.2.3 of the standard, at the required voltage and VAr points of operation. Only Australia setting was tested for this test.

The default VAr level (30% lagging/leading) has been tested as following:

	Q = 30 % Sn						
Voltage Desired (%Un)	Voltage Measured (%Un)	Reactive Power desired (%Sn)	Reactive Power Measured (%Sn)	Reactive Power Deviation (%Sn)			
85.0	85.1	30.0	30.6	0.6			
90.0	89.9	30.0	30.2	0.2			
92.0	92.0	19.4	17.8	-0.2			
95.7	95.8	0.0	0.5	0.5			
100.0	100.2	0.0	0.7	0.7			
102.0	102.1	0.0	0.6	0.6			
104.0	104.1	0.0	0.6	0.6			
108.7	108.7	0.0	0.5	0.5			
112.0	112.0	-15.2	-14.5	0.7			
115.2	115.2	-30.0	-30.3	-0.3			

Page 58 of 171

4.13.1.3 Voltage Balance Modes

The requirement of Voltage Balance Modes test has to be verified according to the clause 6.3.2.4 of the standard.

It is not applicable due to the inverter doesn't provide this operation mode.

4.13.2 Fixed Power Factor Mode and Reactive Power Mode

The verification of reactive power supply capability test has been measured according to the clause 6.3.3 of the standard.

Two different tests have been evaluated:

- Test 1: Rectangular Curve Q fixed (Q=±30% Sn)
- Test 2: Triangular Curve PF fixed (PF=±0.8)

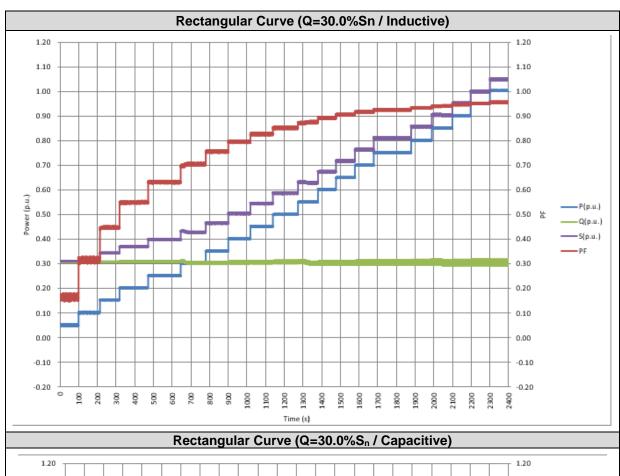
4.13.2.1 Test 1: Rectangular Curve (Q =±30%Sn)

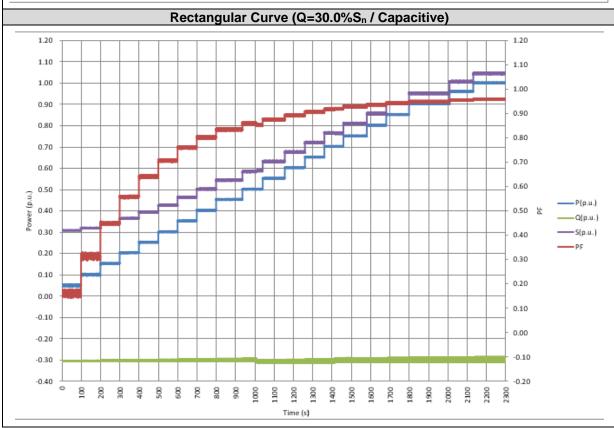
This test verifies the capability of the inverter to provide a fixed value of reactive power. In addition, it is verified the Q control mode.

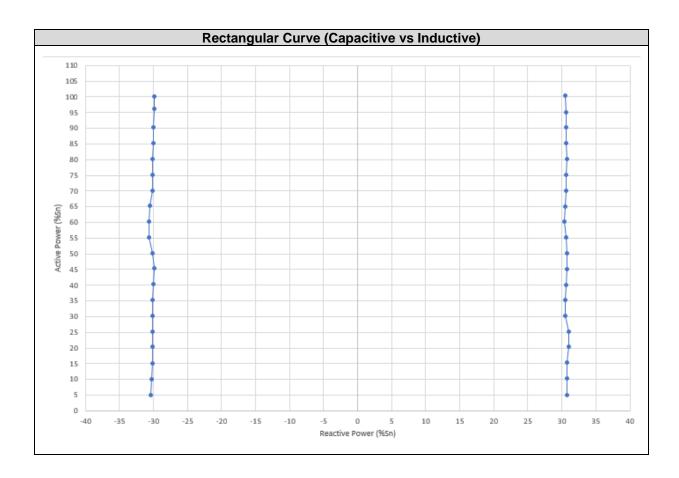
Allowed tolerance to be considered is 5%Sn when possible.

The following table shows the test results:

SGS


	Rectangular Curve (Q=30.0%Sn / Inductive)							
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor			
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)			
5	5.1	30.0	30.7	0.7	0.165			
10	10.2	30.0	30.8	0.8	0.315			
15	15.4	30.0	30.8	0.8	0.446			
20	20.3	30.0	31.0	1.0	0.548			
25	25.2	30.0	31.0	1.0	0.631			
30	30.2	30.0	30.5	0.5	0.703			
35	35.2	30.0	30.5	0.5	0.756			
40	40.2	30.0	30.6	0.6	0.796			
45	45.1	30.0	30.7	0.7	0.827			
50	50.1	30.0	30.8	0.8	0.852			
55	55.2	30.0	30.6	0.6	0.875			
60	60.2	30.0	30.4	0.4	0.893			
65	65.1	30.0	30.5	0.5	0.906			
70	70.1	30.0	30.6	0.6	0.917			
75	75.2	30.0	30.6	0.6	0.926			
80	80.2	30.0	30.7	0.7	0.929			
85	85.2	30.0	30.6	0.6	0.941			
90	90.2	30.0	30.6	0.6	0.947			
95	95.2	30.0	30.6	0.6	0.952			
100	100.4	30.0	30.5	0.5	0.957			




Page 60 of 171

	Rectangular Curve (Q=30.0%Sn / Capacitive)						
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor		
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)		
5	5.0	-30.0	-30.4	-0.4	0.161		
10	10.1	-30.0	-30.3	-0.3	0.315		
15	15.2	-30.0	-30.2	-0.2	0.450		
20	20.4	-30.0	-30.2	-0.2	0.559		
25	25.3	-30.0	-30.2	-0.2	0.642		
30	30.2	-30.0	-30.1	-0.1	0.708		
35	35.3	-30.0	-30.1	-0.1	0.761		
40	40.3	-30.0	-30.0	0.0	0.802		
45	45.3	-30.0	-29.9	0.1	0.834		
50	50.2	-30.0	-30.1	-0.1	0.857		
55	55.3	-30.0	-30.6	-0.6	0.875		
60	60.3	-30.0	-30.6	-0.6	0.892		
65	65.3	-30.0	-30.5	-0.5	0.906		
70	70.2	-30.0	-30.2	-0.2	0.918		
75	75.2	-30.0	-30.1	-0.1	0.928		
80	80.2	-30.0	-30.1	-0.1	0.936		
85	85.2	-30.0	-30.0	0.0	0.943		
90	90.3	-30.0	-30.0	0.0	0.949		
95	96.1	-30.0	-29.9	0.1	0.955		
100	100.1	-30.0	-29.9	0.1	0.958		

Test results are represented at diagrams below.

4.13.2.2 Test 2: Triangular Curve (PF=±0.8)

This test verifies the capability of the inverter to provide a fixed value of power factor. In addition, it is verified the PF control mode.

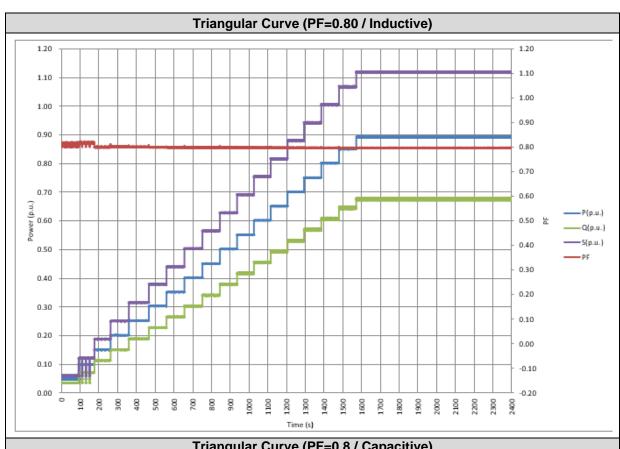
At high active power levels, the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

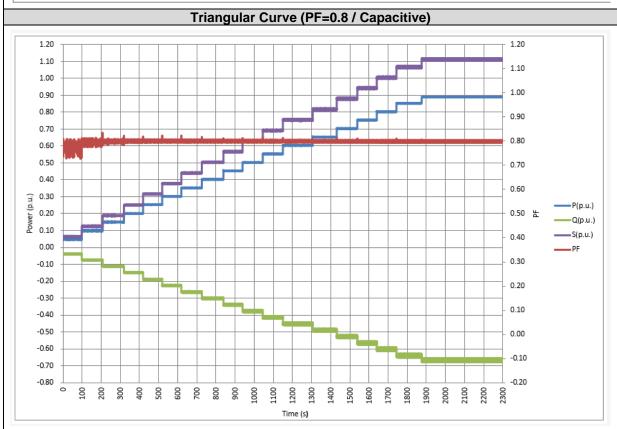
The maximum tolerance allowed for the measured Power Factor is \pm 0.01, for measurements from 25%Sn.

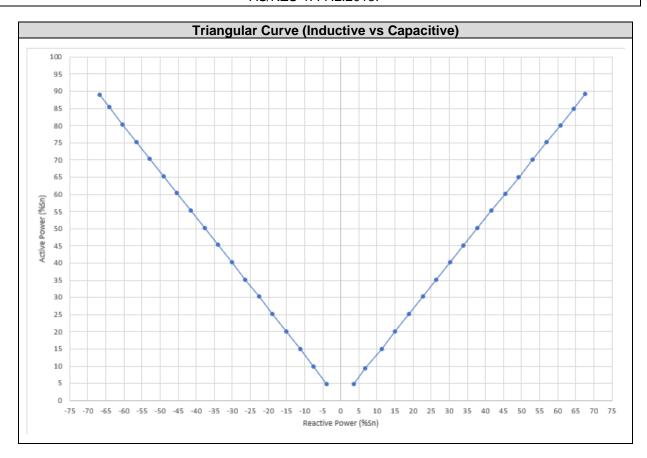
The following table and graphs show test results for measurements of power factor set to 0.800 inductive:

Fixed Power Factor (PF=0.800 / Inductive)					
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
5	4.8	3.5	0.800	0.811	0.011 (**)
10	9.5	6.7	0.800	0.817	0.017 (**)
15	15.0	11.3	0.800	0.800	0.000
20	20.1	15.0	0.800	0.802	0.002
25	25.2	18.9	0.800	0.801	0.001
30	30.3	22.8	0.800	0.800	0.000
35	35.1	26.5	0.800	0.799	-0.001
40	40.2	30.3	0.800	0.798	-0.002
45	45.1	34.0	0.800	0.798	-0.002
50	50.1	37.9	0.800	0.798	-0.002
55	55.2	41.7	0.800	0.798	-0.002
60	60.2	45.5	0.800	0.798	-0.002
65	65.1	49.3	0.800	0.797	-0.003
70	70.1	53.1	0.800	0.797	-0.003
75	75.1	56.9	0.800	0.797	-0.003
80	80.1	60.7	0.800	0.797	-0.003
85	85.0	64.5	0.800	0.797	-0.003
90	89.2	67.6	0.800	0.797	-0.003
95(*)	-	-	-	-	-
100(*)	-	-	-	-	-

^(*) It is reactive power priority in this mode. The inverter does not reach the desired active power above 89.0%Pn due to current limitation.

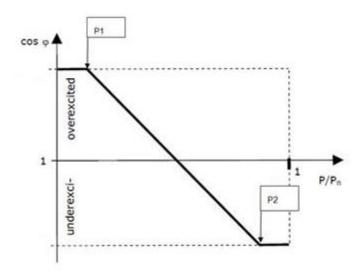

^(**) It is allowed that he maximum tolerance for the measured Power Factor is outside \pm 0.01, for measurements below 25%Sn.


The following table and graphs show test results for measurements of power factor set to 0.800 capacitive:


Fixed Power Factor (PF=0.800 / Capacitive)						
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)	
5	4.8	-3.9	0.800	0.782	-0.018 (**)	
10	9.9	-7.5	0.800	0.797	-0.003	
15	15.0	-11.3	0.800	0.800	0.000	
20	20.1	-15.0	0.800	0.801	0.001	
25	25.3	-19.0	0.800	0.801	0.001	
30	30.2	-22.6	0.800	0.800	0.000	
35	35.2	-26.4	0.800	0.800	0.000	
40	40.3	-30.2	0.800	0.800	0.000	
45	45.3	-34.0	0.800	0.800	0.000	
50	50.3	-37.7	0.800	0.800	0.000	
55	55.3	-41.5	0.800	0.800	0.000	
60	60.3	-45.3	0.800	0.800	0.000	
65	65.3	-49.1	0.800	0.800	0.000	
70	70.3	-52.8	0.800	0.800	0.000	
75	75.3	-56.6	0.800	0.800	0.000	
80	80.3	-60.3	0.800	0.800	0.000	
85	85.3	-64.1	0.800	0.799	-0.001	
90	89.0	-66.8	0.800	0.800	0.000	
95(*)	-	-	-	-	-	
100(*)	-	-	-	-	-	

^(*) It is reactive power priority in this mode. The inverter does not reach the desired active power above 89.0%Pn due to current limitation.

^(**) It is allowed that he maximum tolerance for the measured Power Factor is outside \pm 0.01, for measurements below 25%Sn.



4.13.3 Characteristics Power Factor Curve for Cos ϕ (Power Response)

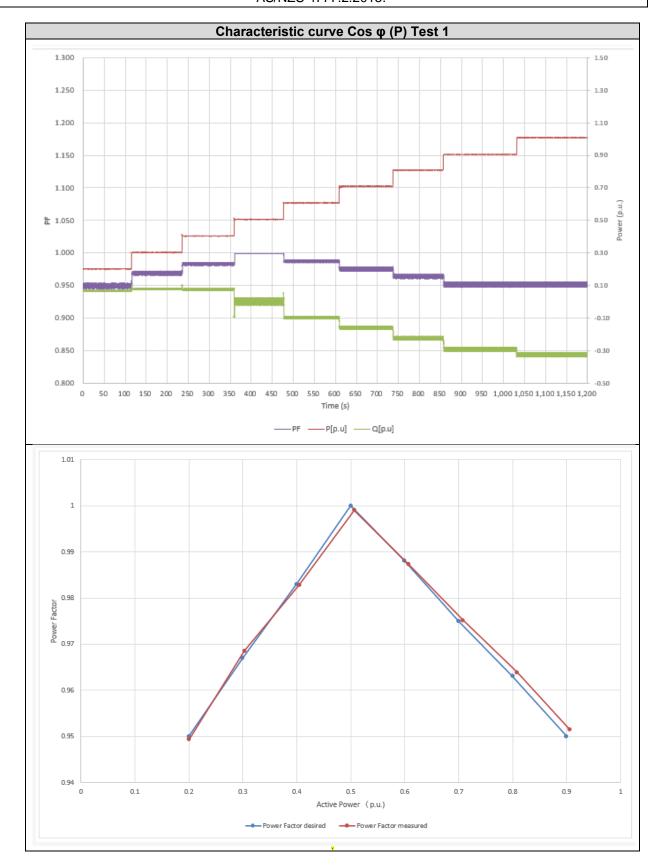
The Characteristic Power Factor Curve for $\cos \phi$ (Power response) has been measured according to the Clause 6.3.4 of the standard. Three tests have been done to verify an adjustable curve from PF inductive to PF capacitive.

These tests have been performed as detailed in following table:

Test Nº	Poin	t P1	Point P2		
	Active Power (%Sn)	Power Factor	Active Power (%Sn)	Power Factor	
1	20%	0.95	90%	-0.95	
2	20%	0.90	90%	-0.90	
3	20%	0.95	80%	-0.95	

For all tests above detailed, the unity power factor is reached at 50%Pn.

There is allowed a maximum tolerance for power factor measurement inside ±0.01.

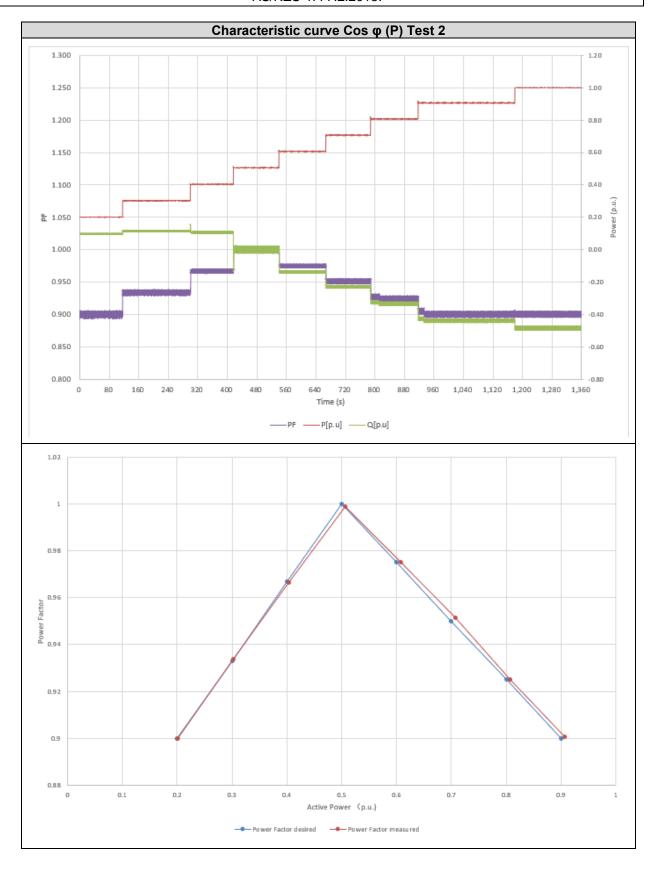

Page 68 of 171

AS/NZS 4777.2:2015.

4.13.3.1 Test 1

In this test it is verified that the power factor varies linearly from PF = 0.95 (inductive) at 20%Pn, PF = 1 at 50%Pn, PF = 0.95 (capacitive) at 90%Pn. The following table shows the obtained test results:

P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.1	6.7	0.950	0.949	-0.001
30	30.3	7.8	0.967	0.969	0.002
40	40.5	7.6	0.983	0.983	0.000
50	50.7	0.4	1.000	0.999	-0.001
60	60.8	-9.7	0.988	0.987	-0.001
70	70.8	-16.1	0.975	0.975	0.000
80	80.9	-22.3	0.963	0.964	0.001
90	90.6	-29.3	0.950	0.951	0.001

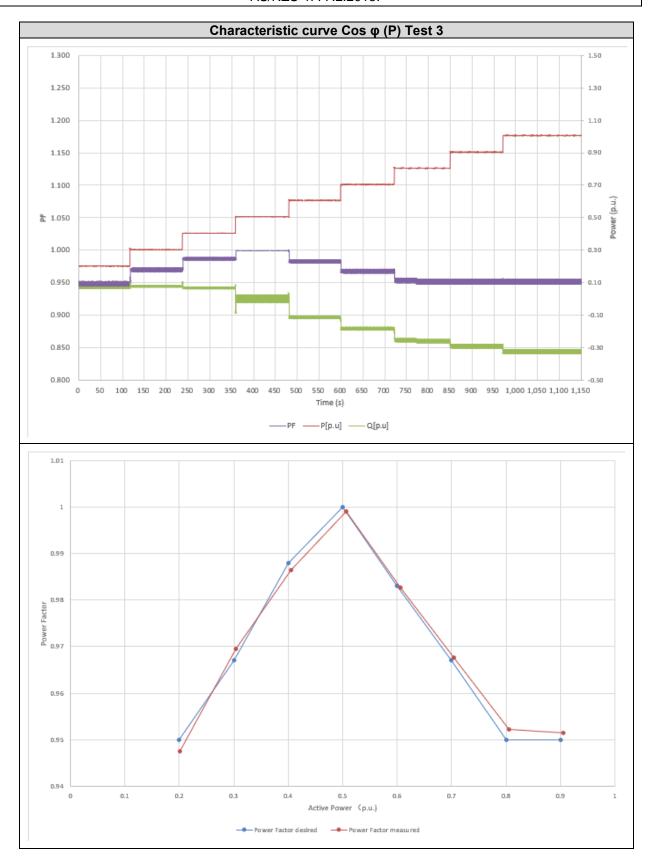

Page 70 of 171

AS/NZS 4777.2:2015.

4.13.3.2 Test 2

In this test it is verified that the power factor varies linearly from PF = 0.90 (inductive) at 20%Pn, PF = 1 at 50%Pn, PF = 0.90 (capacitive) at 90%Pn. The following table shows the obtained test results:

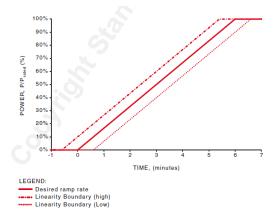
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.1	9.7	0.900	0.900	0.000
30	30.2	11.6	0.933	0.934	0.001
40	40.4	10.7	0.967	0.966	-0.001
50	50.6	-0.1	1.000	0.999	-0.001
60	60.7	-13.7	0.975	0.975	0.000
70	70.7	-22.9	0.950	0.951	0.001
80	80.7	-33.1	0.925	0.925	0.000
90	90.7	-43.8	0.900	0.901	0.001


Page 72 of 171

AS/NZS 4777.2:2015.

4.13.3.3 Test 3

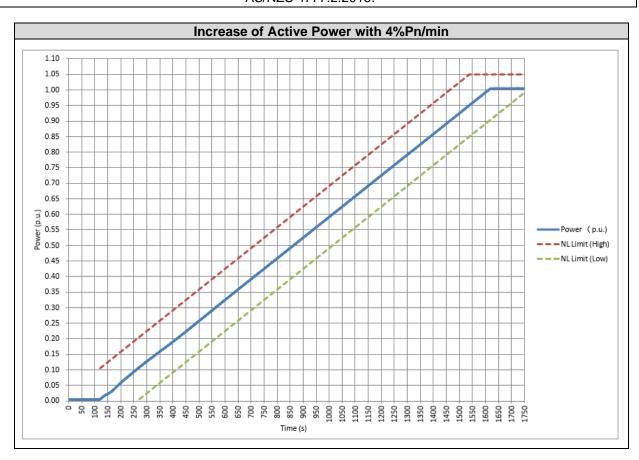
In this test it is verified that the power factor vary linearly from PF = 0.95 (inductive) at 20%Pn to PF = 0.95 (capacitive) at 80%Pn. The following table shows the obtained test results:

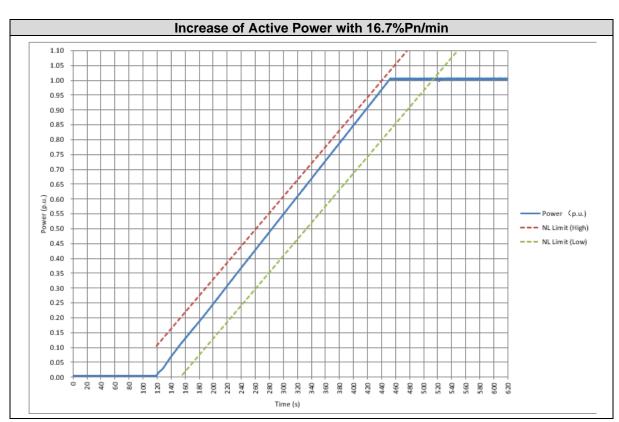

P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.1	6.8	0.950	0.948	-0.002
30	30.3	7.7	0.967	0.969	0.002
40	40.5	6.7	0.988	0.986	-0.002
50	50.6	0.1	1.000	0.999	-0.001
60	60.7	-11.4	0.983	0.983	0.000
70	70.4	-18.4	0.967	0.968	0.001
80	80.5	-25.8	0.950	0.952	0.002
90	90.4	-29.3	0.950	0.951	0.001

4.13.4 Power rate limit

According to the Clause 6.3.5 of the standard, the equipment shall have the capability to gradually increase and decrease its output power when requested.

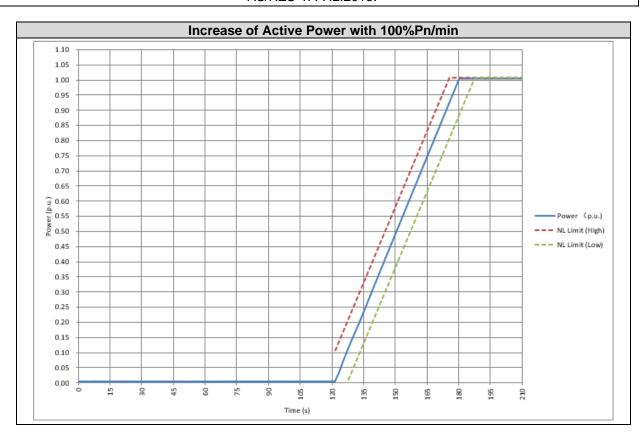
The maximum NL (Nonlinearity) shall be less 10% according to standard.

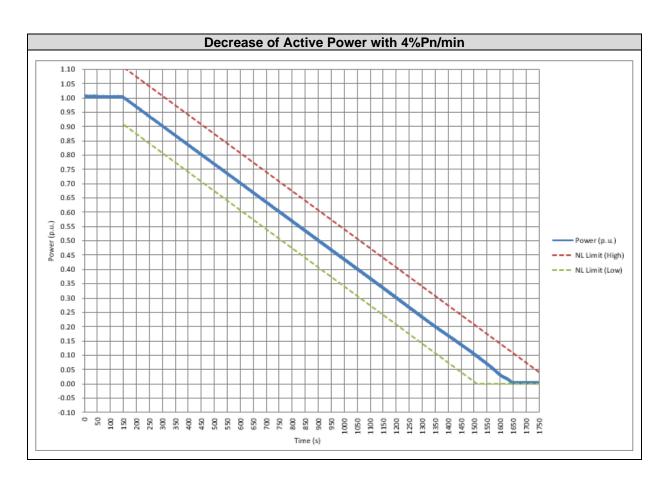


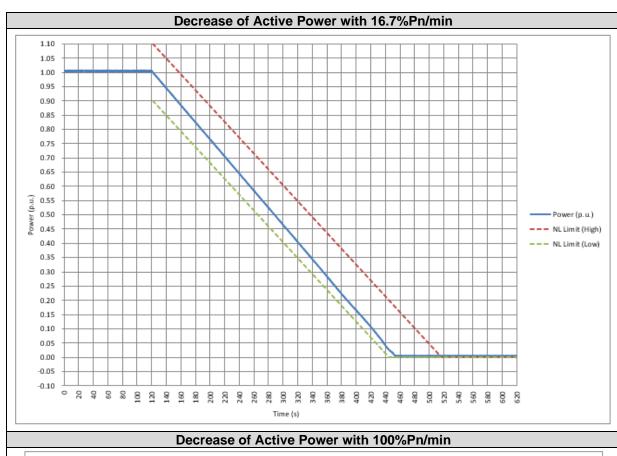

Gradients have ability to set from 4%Pn/min to 100%Pn/min by the control system of the inverter. Test results are offered in the table and pictures below:

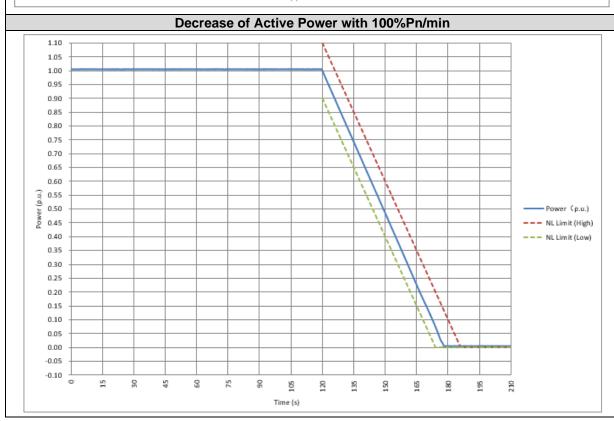
4.13.4.1 Test 1 Soft ramp up after connect or reconnect

Increase of Active Power					
Gradient (ΔP) desired (%P _n /min)	Nominal Ramp Time (s)	Gradient measured (%P _n /min)	Measured Ramp time (s)		
4%	1500	4.0%	1491.2		
16.7%	360	18.0%	331.6		
100%	60	102.0%	58.6		


SGS

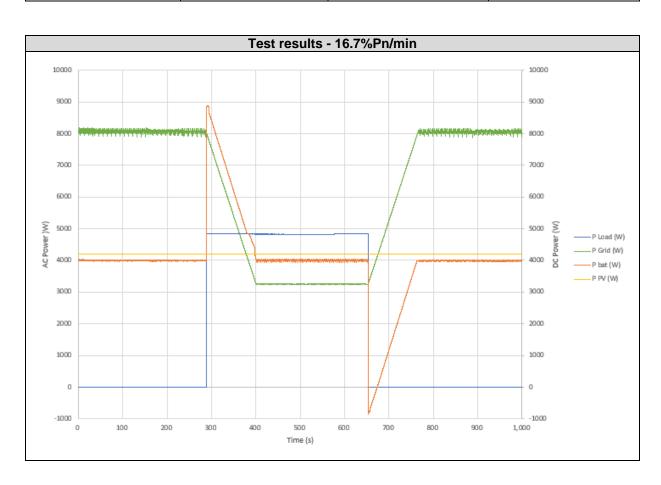

Page 76 of 171





Page 77 of 171

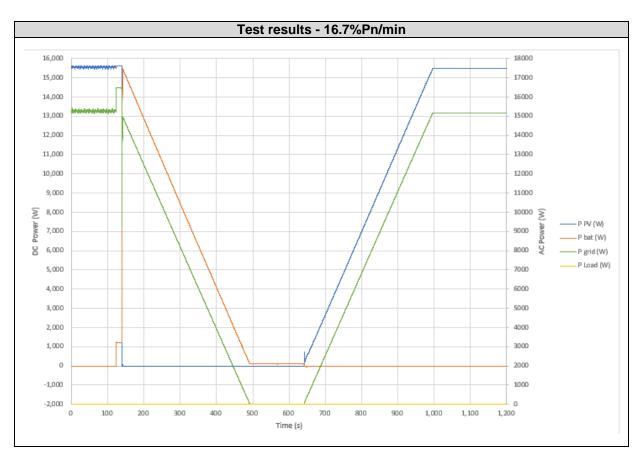
Decrease of Active Power					
Gradient (ΔP) desired (%P _n /min)					
4%	1500	4.0%	1490.4		
16.7%	360	18.0%	330.2		
100%	60	102.7%	58.2		



Page 79 of 171

4.13.4.2 Test 2 Changes in a.c. operation and control

Test results are offered in the table and pictures below:


Increase of A	ctive Power	Decrease of A	Active Power
Gradient (ΔP) desired (%P _n /min)	` ,		Gradient measured (%P _n /min)
16.7%	17.1%	16.7%	17.1%

4.13.4.3 Test 3 Changes in energy source operation

Test results are offered in the table and pictures below:

Increase of A	ctive Power	Decrease of A	Active Power
Gradient (ΔP) desired (%P _n /min)	Gradient measured (%P _n /min)	Gradient (ΔP) desired (%P _n /min)	Gradient measured (%P _n /min)
16.7%	17.1%	16.7%	17.1%

Note: When the PV power is suddenly decreased, the battery will start to output power and let the grid output power decreased with the desired gradient. When the PV power is suddenly increased, the inverter will limit the input power to increase grid output power with the desired gradient.

4.14 MULTIPLE MODE INVERTER OPERATION

The inverter power quality response modes tests have been measured according to Clause 6.4 of the standard.

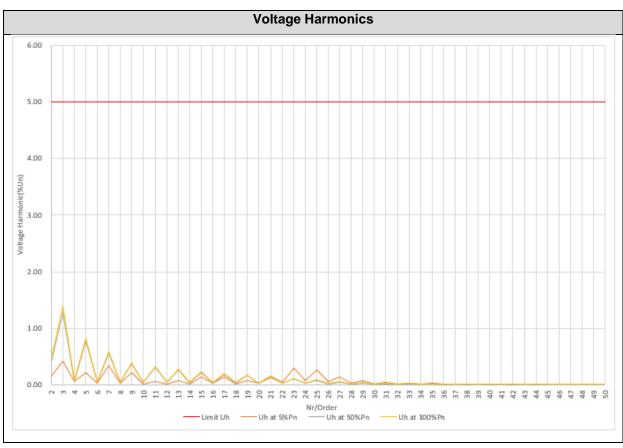
According to the Electrical connections pictures in the user manual, the inverter can work in both grid-connected mode and standalone mode. The neutral conductor keeps on when the inverter changes from grid connect to standalone.

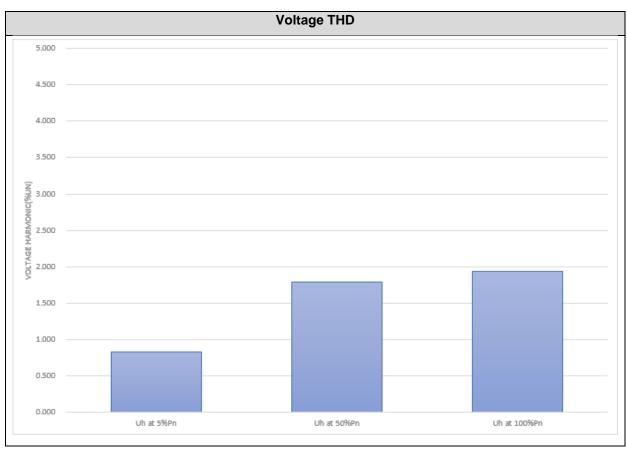
The following operating modes are evaluated:

- Sinusoidal output in stand-alone mode
- Volt watt response mode for charging of energy storage

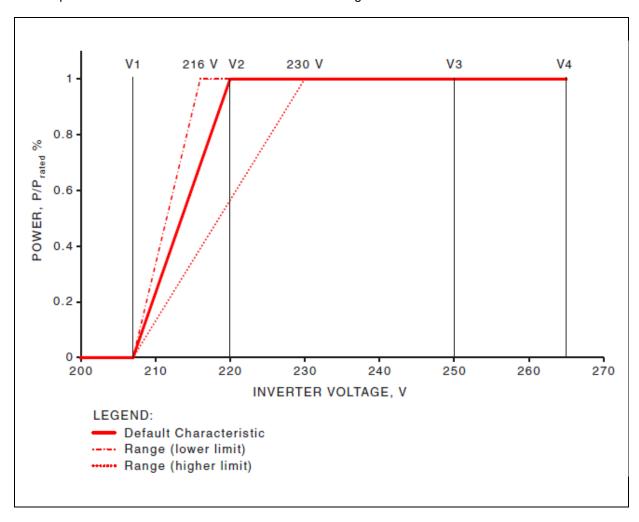
Test results are offered in the following pages:

4.14.1 Sinusoidal output in stand-alone mode


Volt response modes tests have been measured according to Clause 6.4.2 of the standard.


	Voltage Harmonics				
Na/On-Lan	Limit U _h	U _h at 5%Pn	U _h at 50%Pn	U _h at 100%Pn	
Nr/Order	(%fundamental)	(%fundamental)	(%fundamental)	(%fundamental)	
2	5.000	0.149	0.423	0.480	
3	5.000	0.420	1.274	1.401	
4	5.000	0.056	0.058	0.071	
5	5.000	0.221	0.782	0.826	
6	5.000	0.031	0.052	0.053	
7	5.000	0.341	0.564	0.589	
8	5.000	0.032	0.040	0.040	
9	5.000	0.212	0.372	0.390	
10	5.000	0.022	0.039	0.042	
11	5.000	0.065	0.309	0.327	
12	5.000	0.014	0.040	0.040	
13	5.000	0.072	0.263	0.278	
14	5.000	0.023	0.038	0.040	
15	5.000	0.140	0.212	0.226	
16	5.000	0.029	0.037	0.039	
17	5.000	0.135	0.189	0.198	
18	5.000	0.020	0.038	0.039	
19	5.000	0.082	0.167	0.173	
20	5.000	0.024	0.036	0.037	
21	5.000	0.163	0.132	0.138	
22	5.000	0.052	0.032	0.033	
23	5.000	0.288	0.106	0.113	
24	5.000	0.074	0.028	0.030	
25	5.000	0.270	0.077	0.089	
26	5.000	0.056	0.021	0.025	
27	5.000	0.133	0.044	0.063	
28	5.000	0.032	0.015	0.021	
29	5.000	0.079	0.028	0.047	
30	5.000	0.020	0.011	0.017	
31	5.000	0.046	0.018	0.035	
32	5.000	0.017	0.009	0.014	
33	5.000	0.034	0.012	0.025	
34	5.000	0.015	0.008	0.012	
35	5.000	0.023	0.009	0.020	

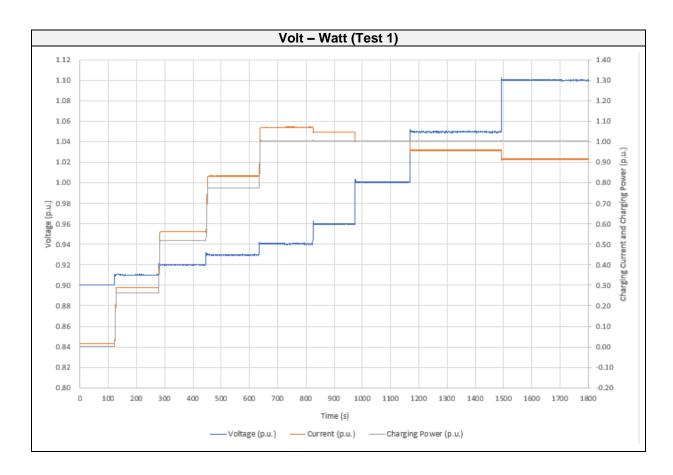
Page 82 of 171


	Voltage Harmonics					
Nr/Order	Limit U _h (%fundamental)	U _h at 5%Pn (%fundamental)	U _h at 50%Pn (%fundamental)	U _h at 100%Pn (%fundamental)		
36	5.000	0.010	0.008	0.011		
37	5.000	0.015	0.008	0.016		
38	5.000	0.010	0.007	0.010		
39	5.000	0.011	0.008	0.013		
40	5.000	0.009	0.007	0.009		
41	5.000	0.009	0.008	0.011		
42	5.000	0.008	0.008	0.009		
43	5.000	0.008	0.008	0.010		
44	5.000	0.009	0.008	0.009		
45	5.000	0.010	0.008	0.009		
46	5.000	0.009	0.008	0.008		
47	5.000	0.009	0.008	0.009		
48	5.000	0.009	0.008	0.008		
49	5.000	0.010	0.008	0.008		
50	5.000	0.010	0.008	0.008		
THD(%U _n)	5.000	0.834	1.789	1.937		

4.14.2 Volt - watt response mode for charging of energy storage

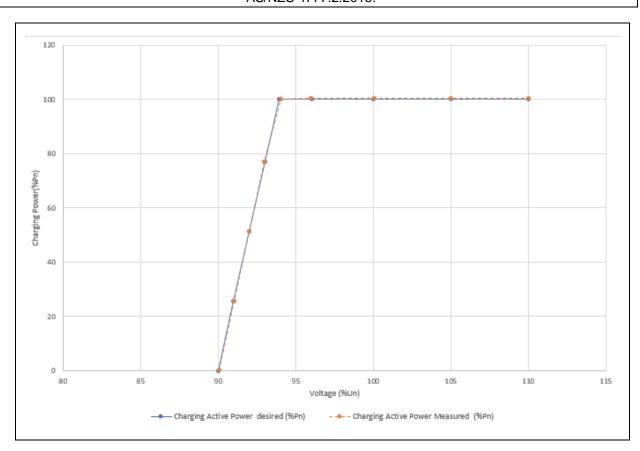
Volt response modes tests have been measured according to Clause 6.4.3 of the standard.

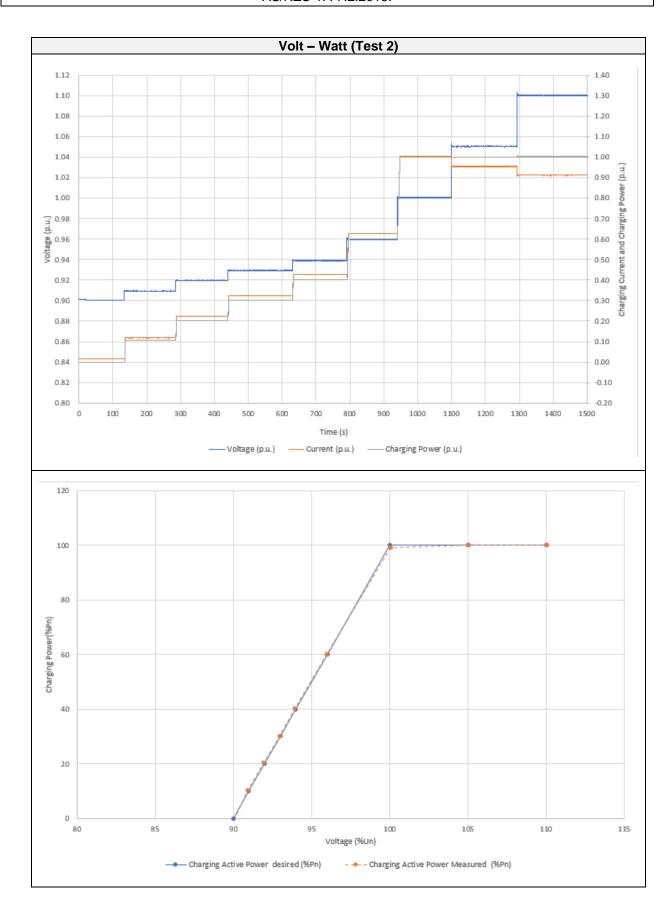
Two different tests have been performed to verify that the inverter volt-watt response is in accordance with the standard. These two curves tested prove also that volt-watt control function is configurable to different curves:


The setting values for voltage and power in the inverter have been the following:

Reference Test 1 Se		Set points	Test 2 Set points	
Reference	Volt. (%Un)	Power (%Pn)	Volt. (%Un)	Power (%Pn)
V1	90.0%	0%	90.1%	0%
V2	93.9%	100%	100.0%	100%
V3	105.0%	100%	105.0%	100%
V4	110.0%	100%	110.0%	100%

4.14.2.1 Test 1


Voltage desired (%Un)	Voltage Measured (%Un)	Charging Active Power desired (%Pn)	Charging Active Power Measured (%Pn)	Charging Active Power Deviation (%Pn)
90.0	90.0	0.0	0.3	0.3
91.0	91.0	25.6	25.7	0.1
92.0	92.0	51.3	51.3	0.0
93.0	93.0	76.9	77.0	0.1
94.0	94.0	100.0	100.2	0.2
96.0	96.0	100.0	100.5	0.5
100.0	100.1	100.0	100.5	0.5
105.0	105.0	100.0	100.5	0.5
110.0	110.0	100.0	100.6	0.6


Page 86 of 171

AS/NZS 4777.2:2015.

4.14.2.2 Test 2

Voltage desired (%Un)	Voltage Measured (%Un)	Charging Active Power desired (%Pn)	Charging Active Power Measured (%Pn)	Charging Active Power Deviation (%Pn)
90.0	90.1	0.0	-0.3	-0.3
91.0	90.9	10.0	10.4	0.4
92.0	92.0	20.0	20.3	0.3
93.0	92.9	30.0	30.1	0.1
94.0	93.9	40.0	40.2	0.2
96.0	96.0	60.0	59.9	-0.1
100.0	100.1	100.0	99.1	-0.9
105.0	105.1	100.0	100.2	0.2
110.0	110.0	100.0	100.2	0.2

4.15 SECURITY OF OPERATIONAL SETTINGS

According to the Clause 6.5 of the standard, it has been verified by inspection that changes to the internal setting may require the use of a tool and special instructions not provided to unauthorized personnel.

4.16 AUTOMATIC DISCONNECTION DEVICE

It has been verified that the automatic disconnection device meets the requirements stated in the Clause 7.2 of the standard.

This automatic disconnection device is in compliance with the following points:

- Is capable to withstand an impulse voltage that could occur at the point of installation and has the appropriate contact gap.
- It doesn't indicate falsely that contacts are open.
- It is installed and designed to prevent unintentional closure that can be caused by events such as impacts or vibration.
- It has devices that disconnects on all live conductors (active and neutral) of the inverter from the grid.
- It is ensured that in case of single fault, there is simple separation.
- It is ensured that in case of single fault, power is prevented to entering the grid.
- It is capable of interrupting the rated current of the equipment.
- The settings of the automatic disconnection don't exceed the capability of the inverter.
- There are not used solid-state semiconductors for isolation purposes.

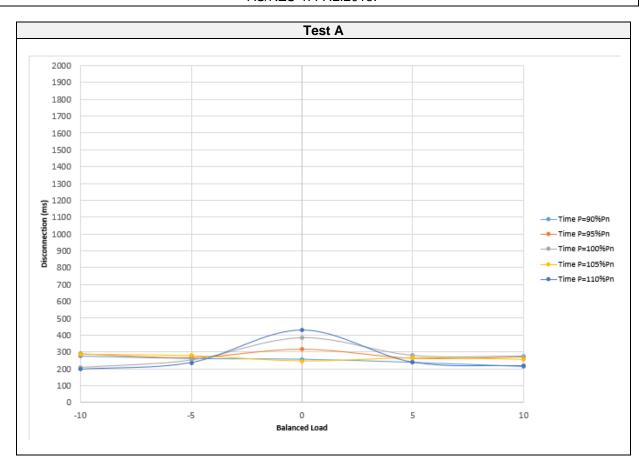
4.17 ACTIVE ANTI-ISLANDING PROTECTION

Test performed according to IEC 62116. The method used to provide active anti-islanding is frequency instability.

It has been done three different tests,

- Test A (Active Power >90% Pn and Input Voltage > 75% Vdc)
- Test B (Active Power 50-66% Pn and Input Voltage 50±10% Vdc)
- Test C (Active Power 25-33% Pn and Input Voltage < 20% Vdc)

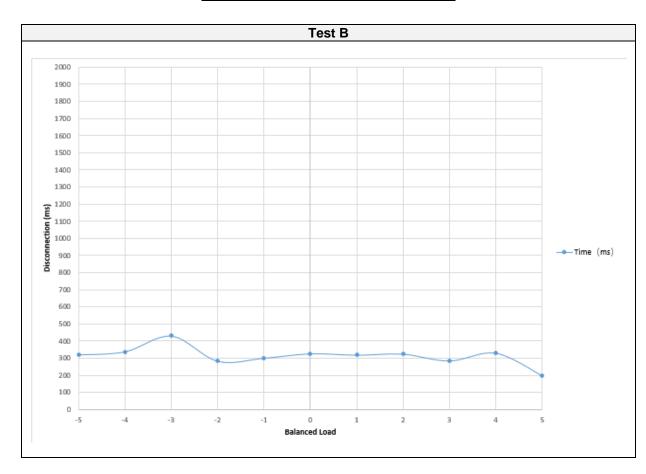
The maximum trip time is 2 s.


Note: In the tables below, M(%) and N(%) are respectively referred to active and reactive power impedance variation as percentage.

4.17.1 Test A

Balance	ed Load	
M (%)	N (%)	Disconnection (ms) (limit at t=2s)
-10	-10	274
-10	-5	260
-10	0	256
-10	+5	238
-10	+10	214
-5	-10	290
-5	-5	268
-5	0	316
-5	+5	264
-5	+10	272
0	-10	208
0	-5	252
0	0	386
0	+5	280
0	+10	276
+5	-10	286
+5	-5	278
+5	0	244
+5	+5	264
+5	+10	254
+10	-10	196
+10	-5	236
+10	0	432
+10	+5	238
+10	+10	216

Page 90 of 171

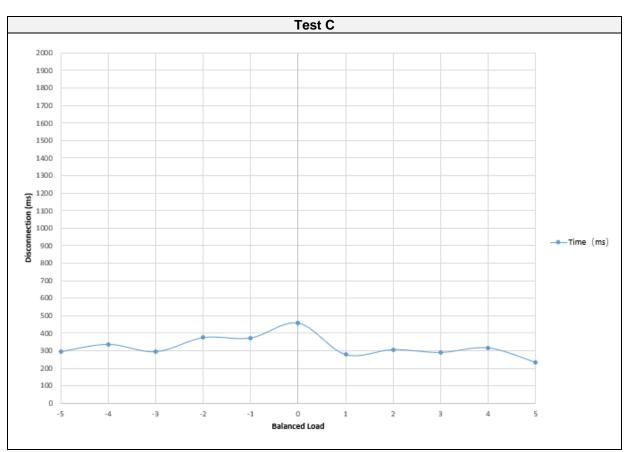


Page 91 of 171

AS/NZS 4777.2:2015.

4.17.2 Test B

Balance	ed Load	
M (%)	N (%)	Disconnection (ms) (limit at t=2s)
0	-5	320
0	-4	338
0	-3	430
0	-2	282
0	-1	300
0	0	326
0	1	318
0	2	324
0	3	284
0	4	330
0	5	198



Page 92 of 171

AS/NZS 4777.2:2015.

4.17.3 Test C

Balance	ed Load	
M (%)	N (%)	Disconnection (ms) (limit at t=2s)
0	-5	294
0	-4	336
0	-3	294
0	-2	374
0	-1	372
0	0	456
0	1	278
0	2	306
0	3	290
0	4	316
0	5	234

4.18 VOLTAGE AND FREQUENCY LIMITS (PASSIVE ANTI-ISLANDING PROTECTION)

Voltage and frequency limits (Passive Anti-islanding Protection) have been verified according to the Clause 7.4 of the standard.

The inverter should remain in continuous and uninterrupted operation for voltage and frequency variations with duration shorter than the trip delay time specified in the next table:

Protective function	Protective function limit	Trip delay time	Maximum disconnection time
Undervoltage (V<)	180 V	1 s	2 s
Overvoltage 1 (V>)	260 V	1 s	2 s
Overvoltage 2 (V>>)	265 V	_	0.2 s
Under-frequency (F<)	47 Hz (Australia) 45 Hz (New Zealand)	1 s	2 s
Over-frequency (F>)	52 Hz	_	0.2 s

Voltage limits stated by the standard have been expressed as a percentage of 230V and applied to the rated values of the family of inverters contemplated in this report.

Each test should be repeated 3 times.

Following indications shall be taken into account to for test results offered in this point.

For trip tests evaluation it is considered the time from when the voltage or frequency, as proceed, is stabilized at the setting value to the instant when the inverter is effectively disconnected and with no current.

For frequency trip tests evaluation, in order to have a bigger accuracy it has been evaluated and represented the first period of the sine wave where the frequency surpasses the frequency limit and from that first period has been evaluated the tripping time.

For these cases, a second graph representing the "trip value" is offered. In them cursors are allocated among the beginning and the end of a period of the voltage sine wave, measuring the time that lasts the whole period and allowing calculating the frequency of the period.

Report N. 2220-0288 Page 94 of 171 AS/NZS 4777.2:2015.

4.18.1 Voltage trip tests

To asses that the protective function of the inverter against abnormal voltage is effective two different kinds of tests have been done:

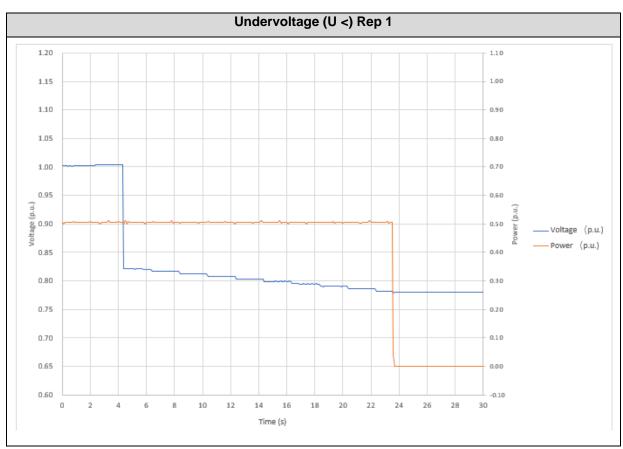
- Trip value tests to evaluate if the inverter can trip with accuracy in accordance with a settling value of voltage.
- Trip time tests to evaluate if the inverter can trip into the limits of time stated by the standard in case of detecting voltage levels out of the limits stated.

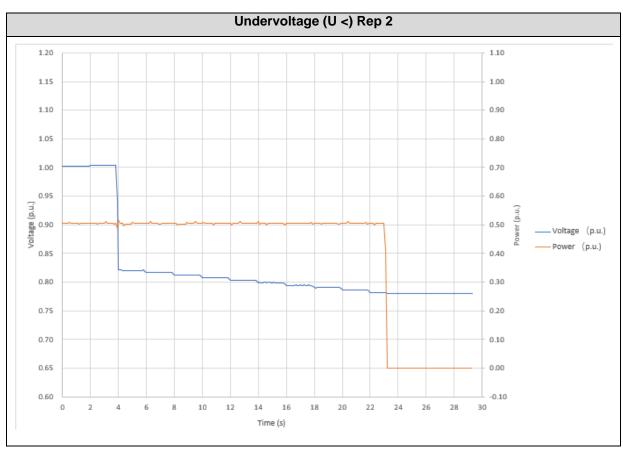
The standard states that the tolerance limit for voltage trip values is \pm 2 V, which is a 0.8% Un over 230 V, the reference voltage considered by the standard. So 0.8% Un is the allowed tolerance to be considered for voltage trip value tests.

4.18.1.1 Voltage trip value tests

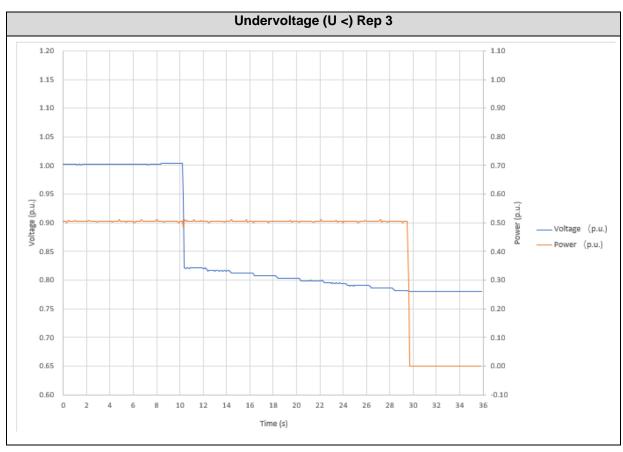
The tests have been made as the following procedure:

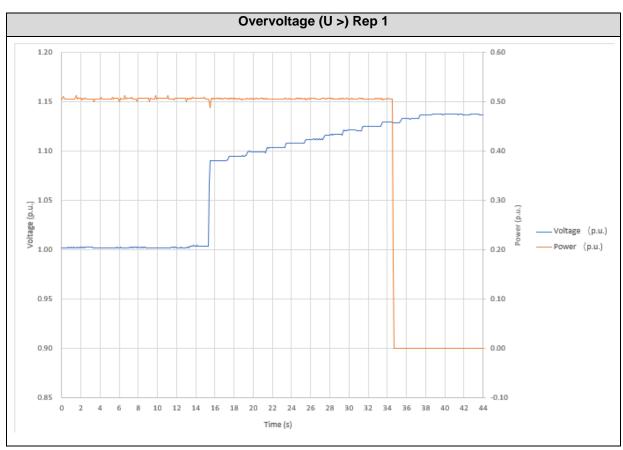
- For undervoltage protection (U<): Starting from a voltage level 1% Un above the trip value of the protection function to be tested, the voltage is decreased 1V in steps of at least 5 seconds.
- For overvoltage protection (U>): Starting from a voltage level 1% Un below the trip value of the protection function to be tested, the voltage is increased 1V in steps of at least 5 seconds.
- For overvoltage protection (U>>): Starting from a voltage level 1% Un below the trip value of the
 protection function to be tested, the voltage is increased 1V in steps of at least 5 seconds. Disable
 overvoltage protection (U>) function during the test.

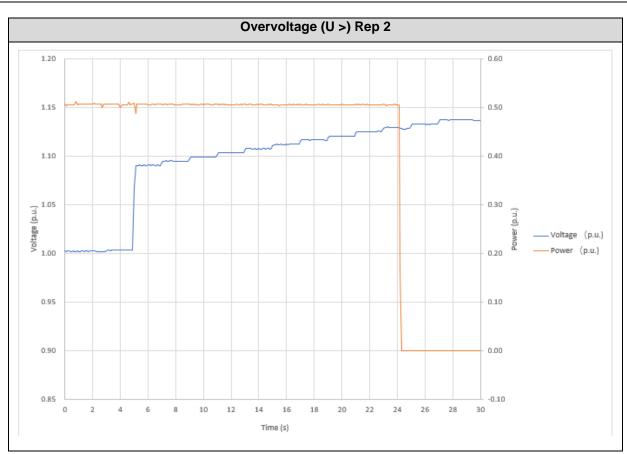

Test results are offered in the following table:

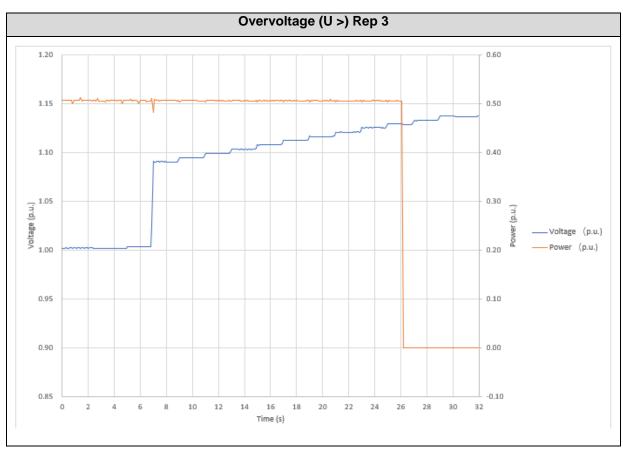

	No Trip Test			Trip Test			
Protective Function Tested	Start Voltage value (%Un)	Time measured per step (s) (**)	Trip	Voltage Trip settling value (%Un)	Trip	Voltage trip value measured (%Un)	
U < (Rep 1)	79.5%	>2.00	⊠ NO □ YES	78.3%	□ NO ☑ YES	78.0%	
U < (Rep 2)	79.5%	>2.00	⊠ NO □ YES	78.3%	□ NO ⊠ YES	78.0%	
U < (Rep 3)	79.5%	>2.00	⊠ NO □ YES	78.3%	□ NO ⊠ YES	78.0%	
U > (Rep 1)	112.0%	>2.00	⊠ NO □ YES	113.0%	□ NO ☑ YES	112.8%	
U > (Rep 2)	112.0%	>2.00	⊠ NO □ YES	113.0%	□ NO ⊠ YES	112.8%	
U > (Rep 3)	112.0%	>2.00	⊠ NO □ YES	113.0%	□ NO ⊠ YES	112.8%	
U > > (Rep 1) (*)	114.0%	>2.00	⊠ NO □ YES	115.0%	□ NO ⊠ YES	115.0%	
U > > (Rep 2) (*)	114.0%	>2.00	⊠ NO □ YES	115.0%	□ NO ☑ YES	115.0%	
U > > (Rep 3) (*)	114.0%	>2.00	⊠ NO □ YES	115.0%	□ NO ⊠ YES	115.0%	

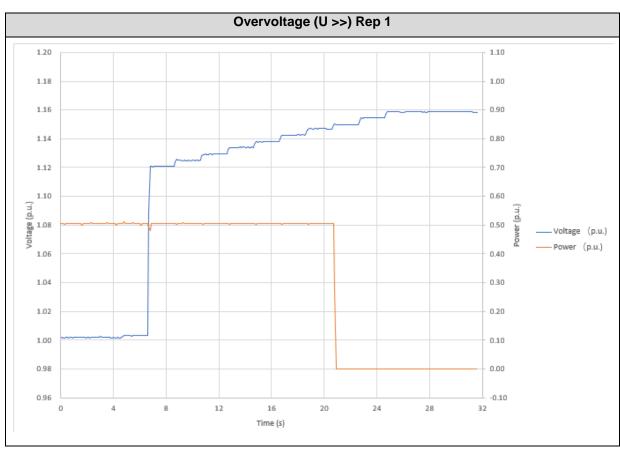
Note: Maximum deviation allowed in voltage trip value is \pm 0.8% Un.

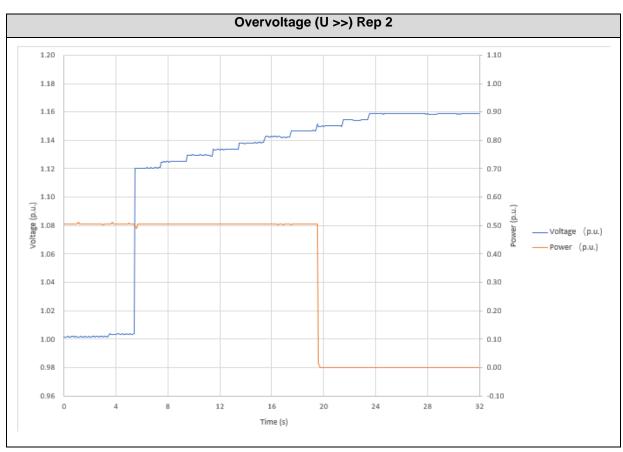

Test results are graphically shown in following pages.

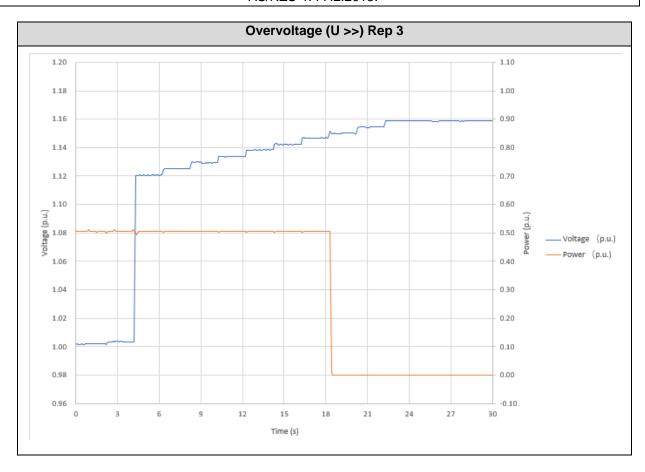

^(*) Disable overvoltage protection (U>) function during the test. (**) This time is enough to see that the inverter doesn't trip in this voltage level.






SGS





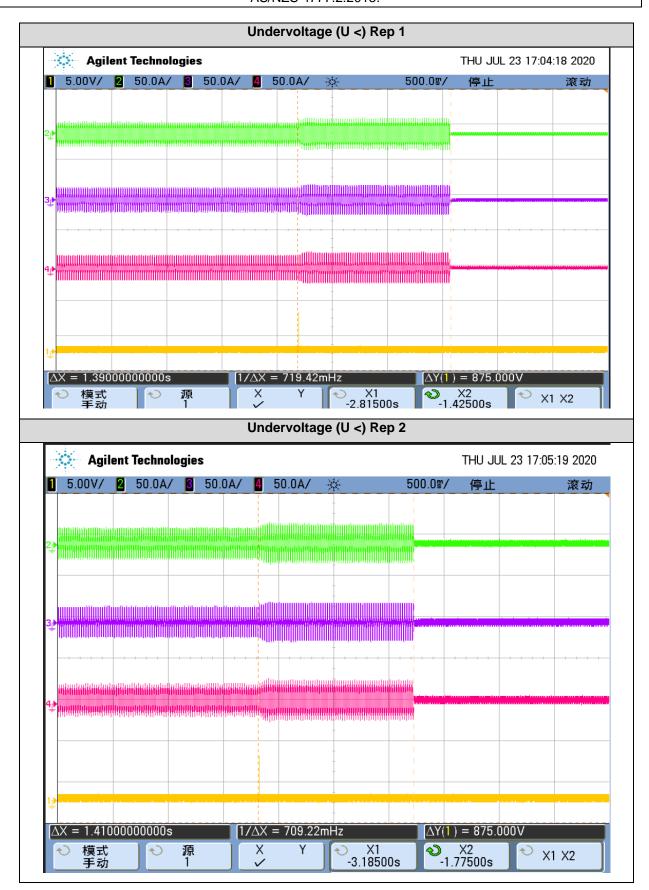
Page 100 of 171

4.18.1.2 Voltage trip time tests

The tests have been made as the following procedure:

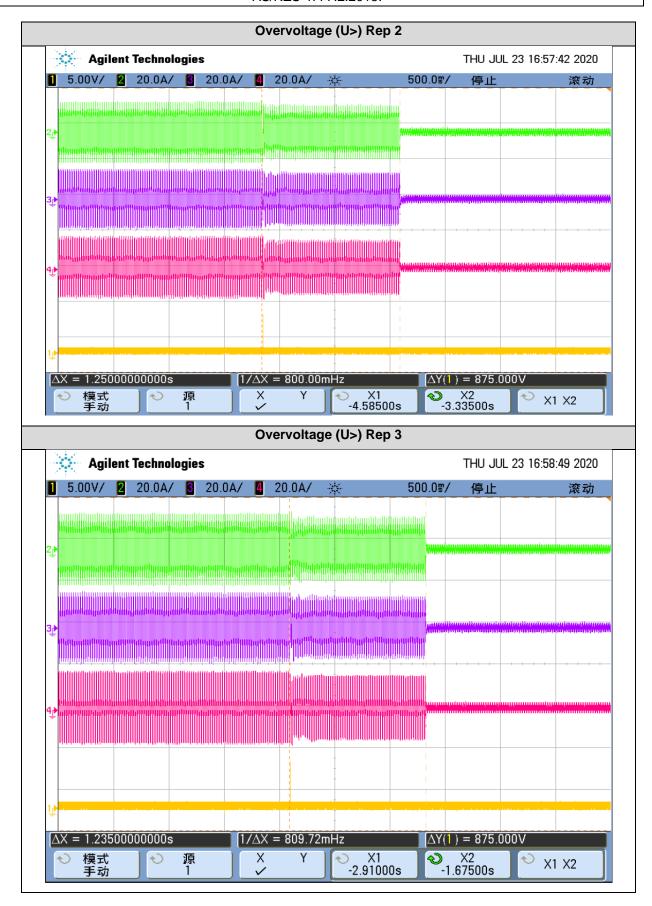
- For undervoltage protection (U<): Maintaining the voltage with a value 78.5%Un during at least 1.5 seconds and then change the voltage to 78.2%Un with a step. Trip time shall take place in less than 2 seconds and more than 1s.
- For overvoltage protection (U>): Maintaining the voltage with a value 112.5%Un during at least 1.5 seconds and then change the voltage to 113.0%Un with a step. Trip time shall take place in less than 2 seconds and more than 1s.
- For overvoltage protection (U>>): Maintaining the voltage with a value 114.5%Un during at least 0.5 seconds and then change the voltage to 115.0%Un with a step. Trip time shall take place in less than 0.2 seconds.

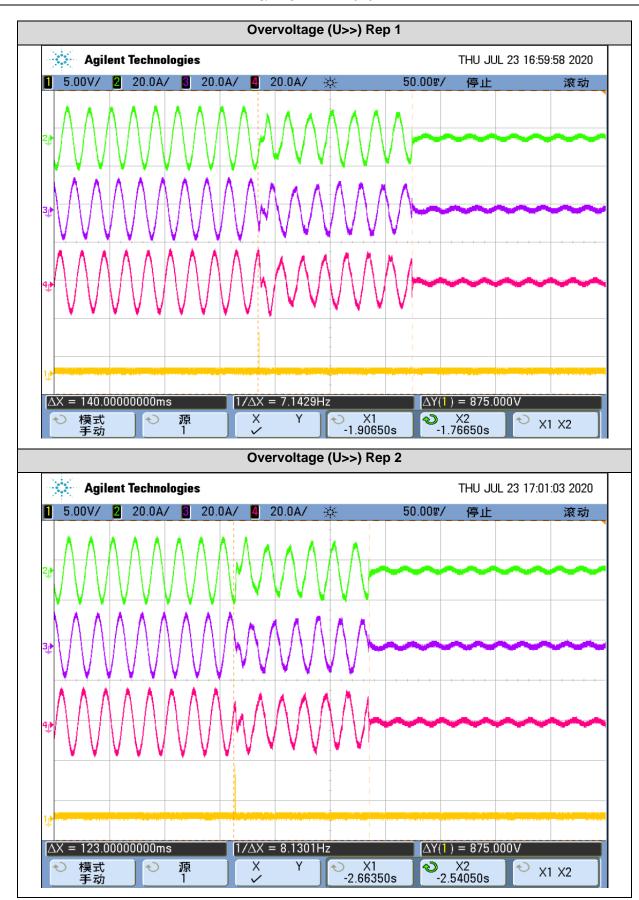
Test results are offered in the following table:

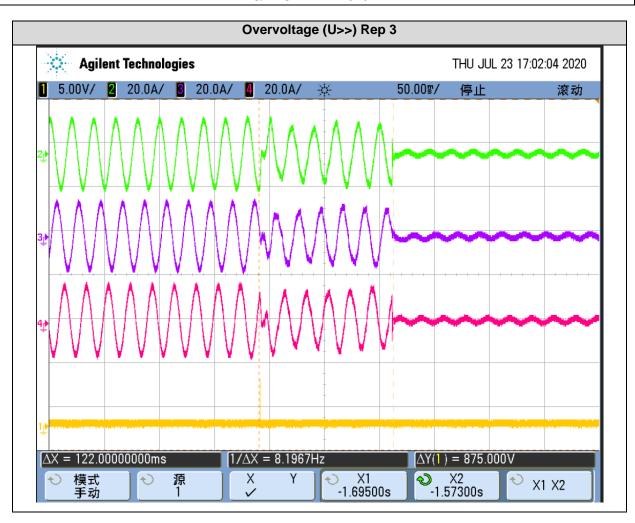

		No Trip Test	Trip Test			
Protective Function Tested	Voltage value (%Un)	Time measured (s) (*)	Trip	Voltage settling value (%Un)	Trip	Trip time measured (ms)
U < (Rep 1)	78.5%	>1.5	⊠ NO □ YES	78.3%	□ NO 図 YES	1390
U < (Rep 2)	78.5%	>1.5	⊠ NO □ YES	78.3%	□ NO 図 YES	1410
U < (Rep 3)	78.5%	>1.5	⊠ NO □ YES	78.3%	□ NO □ YES	1270
U > (Rep 1)	112.5%	>1.5	⊠ NO □ YES	113.0%	□ NO 図 YES	1225
U > (Rep 2)	112.5%	>1.5	⊠ NO □ YES	113.0%	□ NO 図 YES	1250
U > (Rep 3)	112.5%	>1.5	⊠ NO □ YES	113.0%	□ NO 図 YES	1235
U > > (Rep 1)	114.5%	> 0.5	⊠ NO □ YES	115.0%	□ NO 図 YES	140
U > > (Rep 2)	114.5%	> 0.5	⊠ NO □ YES	115.0%	□ NO 図 YES	123
U > > (Rep 3)	114.5%	> 0.5	⊠ NO □ YES	115.0%	□ NO 図 YES	122

Test results are graphically shown in the graph below and in the following page.

(*) This time is enough to see that the inverter doesn't trip in this voltage level.


Page 102 of 171


SGS



SGS

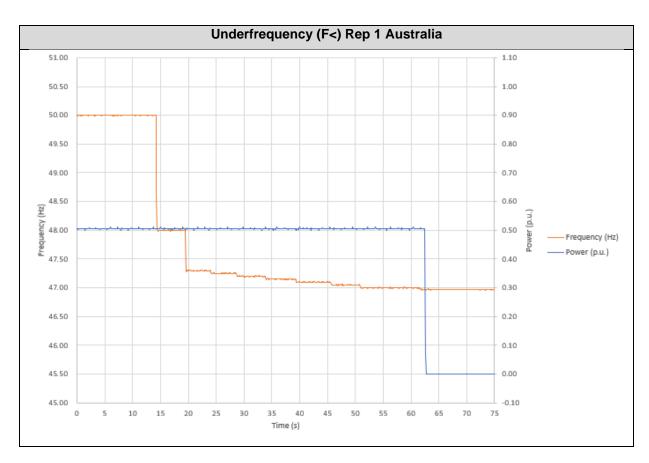
4.18.2 Frequency trip tests

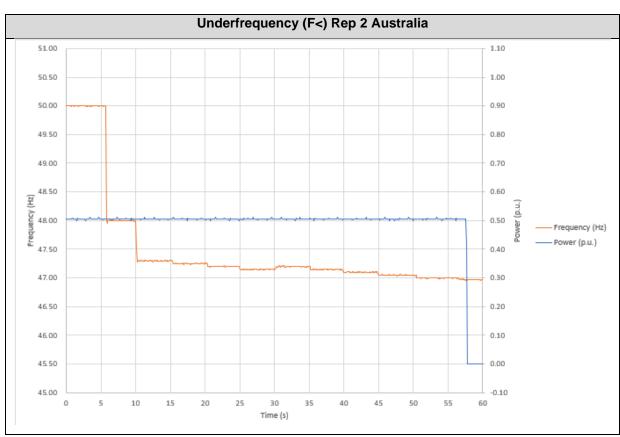
To asses that the protective function of the inverter against abnormal frequency is effective two different kinds of tests have been done:

- Trip value tests, to evaluate if the inverter can trip with accuracy in accordance with a settling value of frequency.
- Trip time tests, to evaluate if the inverter can trip into the limits of time stated by the standard in case of detecting frequency levels out of the limits stated by the standard.

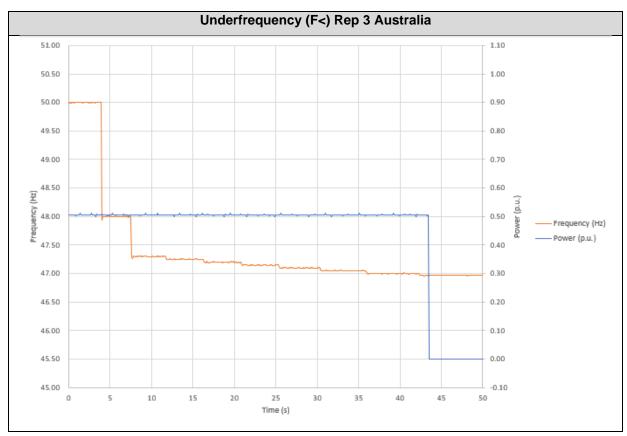
4.18.2.1 Frequency trip value tests

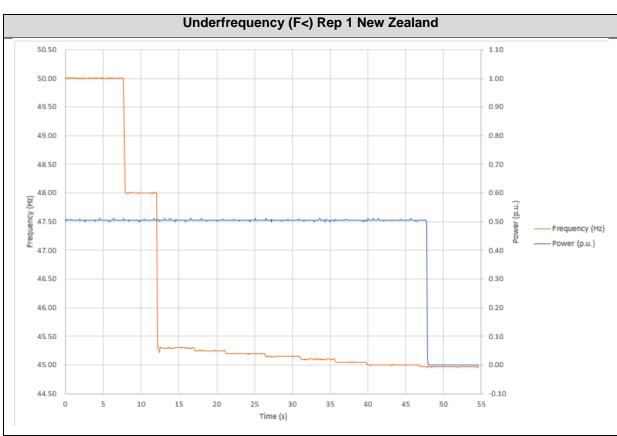
The tests have been made as the following procedure:

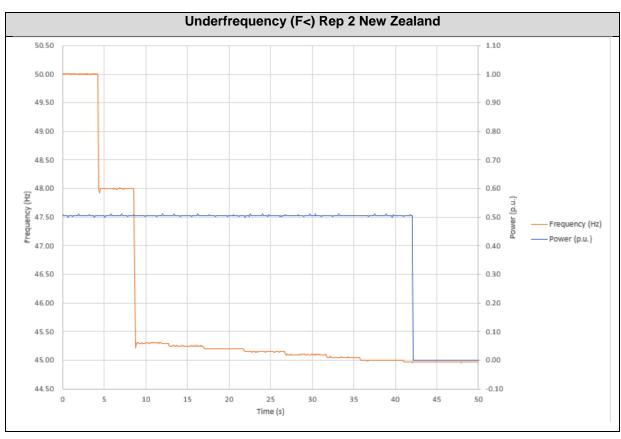

- For underfrequency protection: Starting from a frequency level 0.2 Hz above the trip value of the protection function to be tested, the frequency is decreased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.
- For overfrequency protection: Starting from a frequency level 0.2 Hz below the trip value of the protection function to be tested, the frequency is increased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.

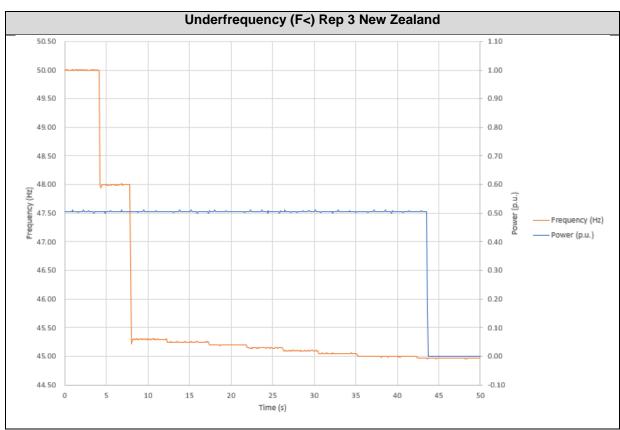

Test results are offered in the following tables:

	No Trip Test			Trip Test			
Protective Function Tested	Frequency value (Hz)	Time measured (s)	Trip	Frequency settling value (Hz)	Trip	Frequency trip value measured (Hz)	
F< (Rep1) Australia	47.20	> 5.0	⊠ NO □ YES	47.00	□ NO ⊠ YES	46.97	
F< (Rep2) Australia	47.20	> 5.0	⊠ NO □ YES	47.00	□ NO ⊠ YES	46.97	
F< (Rep3) Australia	47.20	> 5.0	⊠ NO □ YES	47.00	□ NO ⊠ YES	46.97	
F< (Rep1) New Zealand	45.20	> 5.0	⊠ NO □ YES	45.00	□ NO ⊠ YES	44.97	
F< (Rep2) New Zealand	45.20	> 5.0	⊠ NO □ YES	45.00	□ NO ☑ YES	44.97	
F< (Rep3) New Zealand	45.20	> 5.0	⊠ NO □ YES	45.00	□ NO ⊠ YES	44.97	
F> (Rep1)	51.80	> 5.0	⊠ NO □ YES	52.00	□ NO ⊠ YES	52.00	
F> (Rep2)	51.80	> 5.0	⊠ NO □ YES	52.00	□ NO ⊠ YES	52.00	
F> (Rep3)	51.80	> 5.0	⊠ NO □ YES	52.00	□ NO ⊠ YES	52.00	

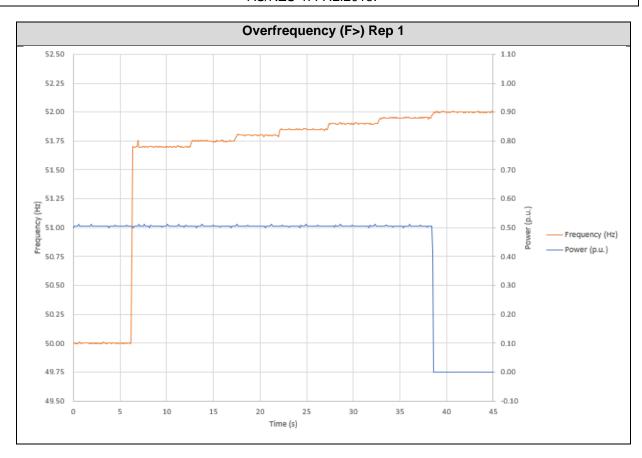

Maximum frequency deviation allowed is ±0.10 Hz.

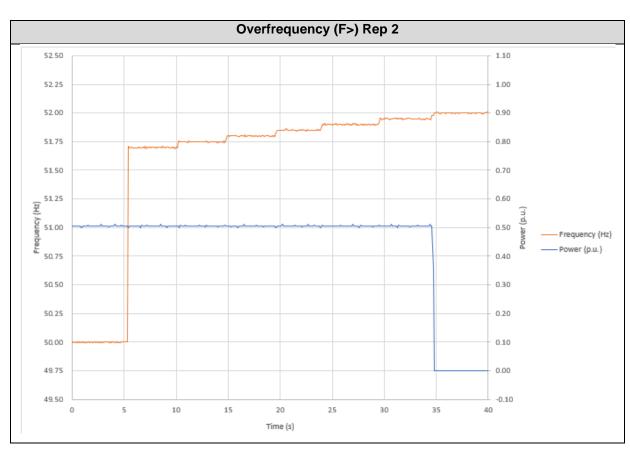

Test results are graphically shown in following pages.

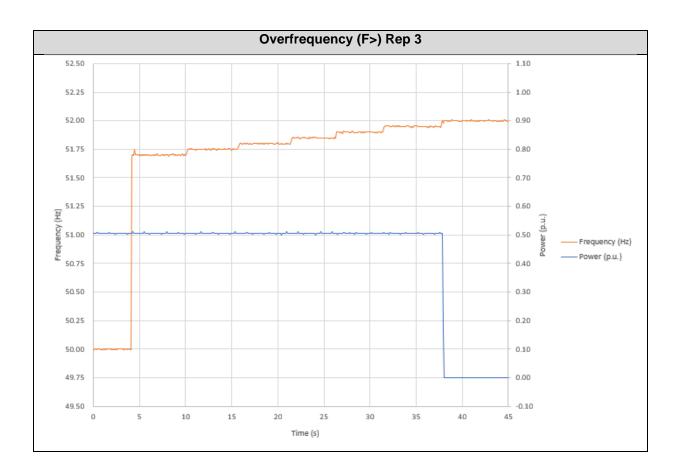




Page 109 of 171






Page 111 of 171

Page 112 of 171

4.18.2.2 Frequency trip time tests

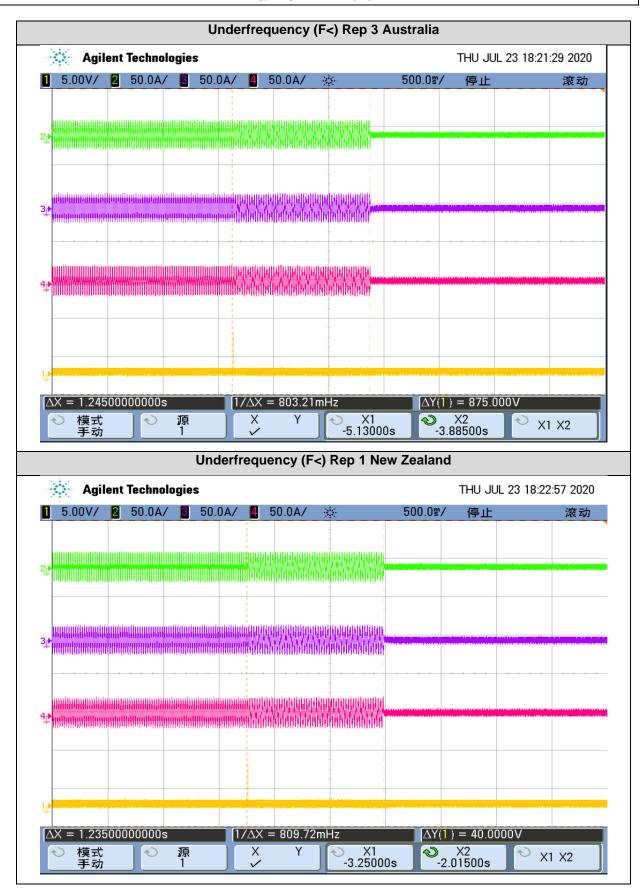
The tests have been made as the following procedure:

- For underfrequency protection: Maintaining the frequency with a value over the settling value during at least 1.5 seconds and then change the frequency to 46 Hz with a step.
- For overfrequency protection: Maintaining the frequency with a value below the settling value during at least 0.5 seconds and then change the frequency to 53 Hz with a step.

For underfrequency the standard states that the trip shall take place with a delay of at least 1 second and in less than 2 seconds, for overfrequency the condition stated by the standard is to trip in less than 0.2 seconds.

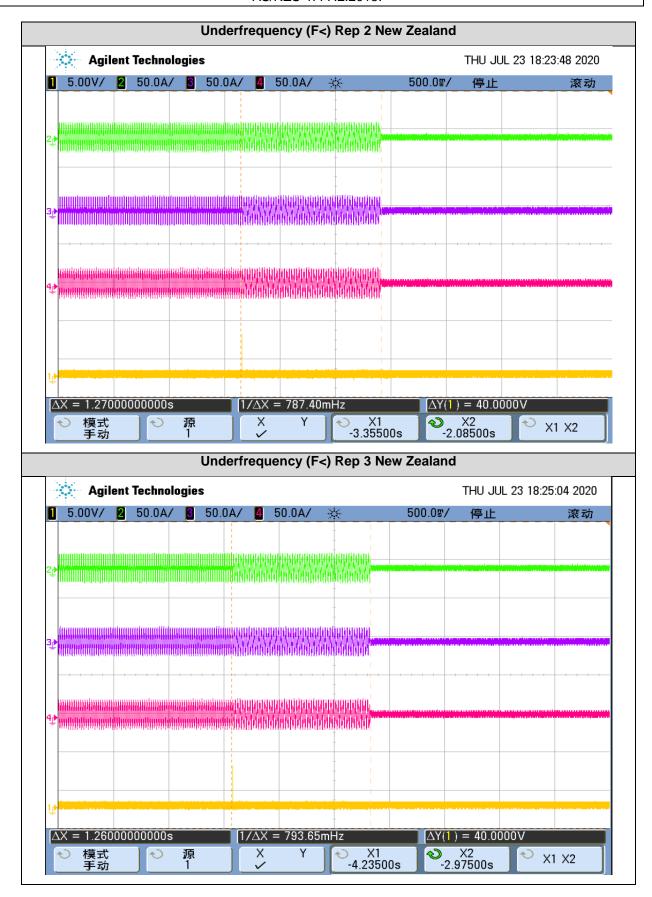
Test results are offered in the following tables:

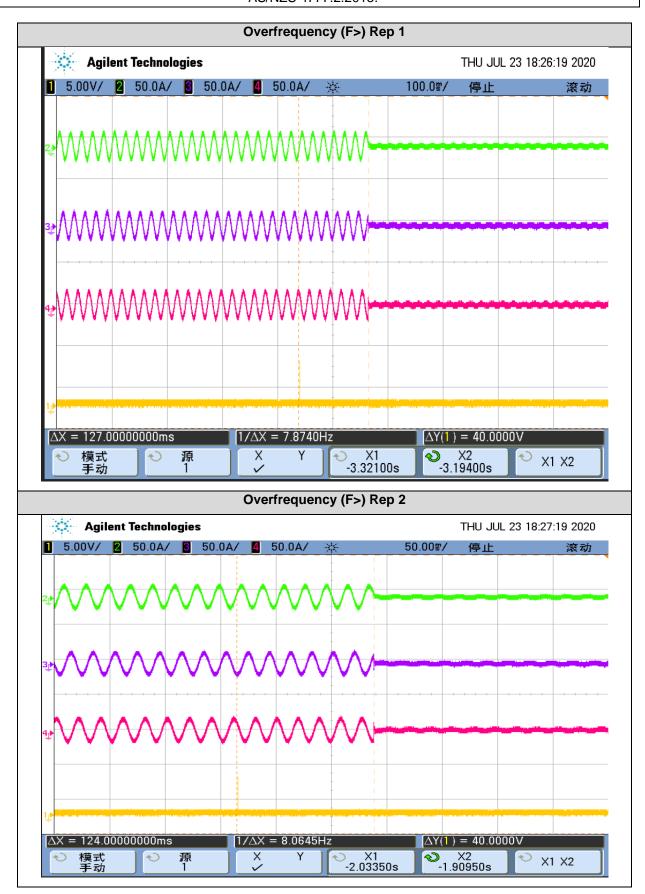
Dretective		No Trip Test		Trip Test		
Protective Function Tested	Frequency value (Hz)	Time measured (s)	Trip	Frequency settling value (Hz)	Trip	Trip Time measured (ms)
F< (Rep1) Australia	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1250
F< (Rep2) Australia	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1255
F< (Rep3) Australia	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1245
F< (Rep1) New Zealand	45.10	> 1.5	⊠ NO □ YES	45.00	□ NO ⊠ YES	1235
F< (Rep2) New Zealand	45.10	> 1.5	⊠ NO □ YES	45.00	□ NO ☑ YES	1270
F< (Rep3) New Zealand	45.10	> 1.5	⊠ NO □ YES	45.00	□ NO ⊠ YES	1260
F> (Rep 1)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	127
F> (Rep 2)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	124
F> (Rep 3)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	129

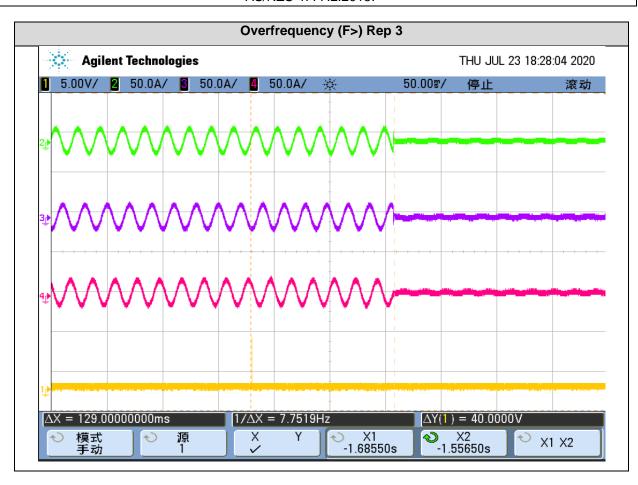

Maximum frequency deviation allowed is ±0.10 Hz.

Test results are graphically shown in following pages.

SGS




SGS



Page 116 of 171

SGS

4.19 SUSTAINED OPERATION FOR VOLTAGE VARIATIONS

Tests for verifying the limits sustained operation for voltage variations have been carried out according to the Clause 7.5.2 of the standard.

The inverter shall operate the automatic disconnection device within 3 seconds when the average voltage for a 10 min period exceeds the V_{nom_max} . The voltage value applied for V_{nom_max} is 255V for Australia and 248V for New Zealand.

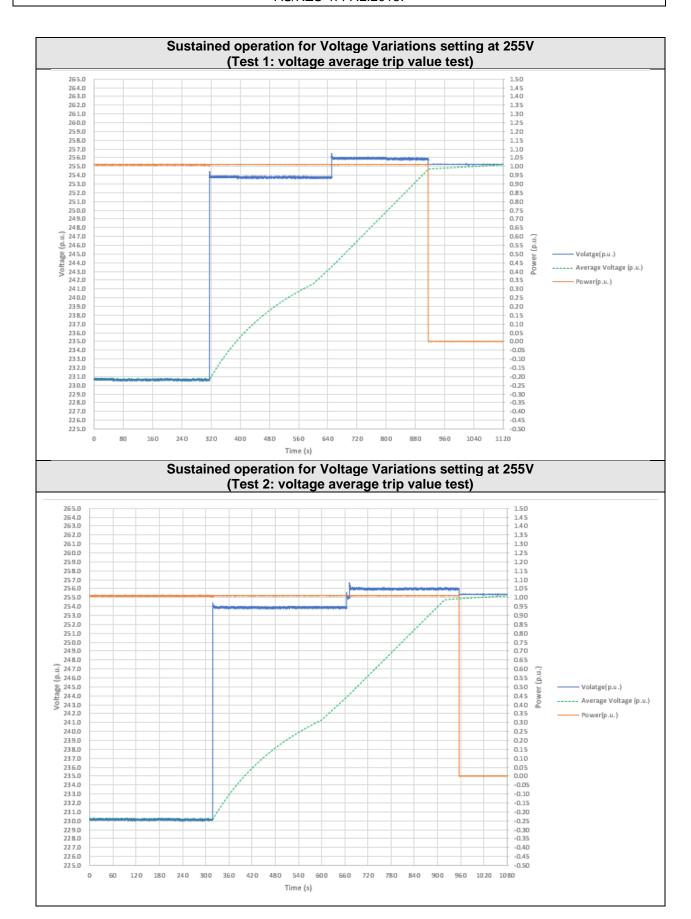
For the test performed, it has been verified that the inverter trips when any of the calculated voltage averages for total of the three phase system is above Vnom_max.

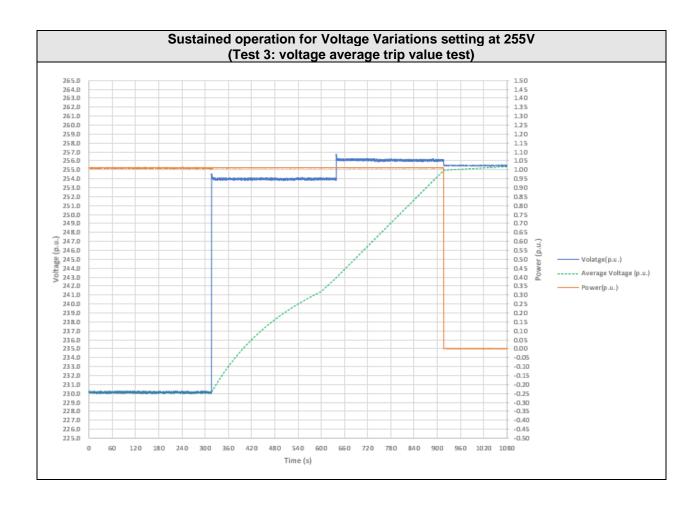
The test has been repeated 3 times for verifying the accuracy of the voltage trip value and the trip time.

The admissible tolerance between setting value and trip value of the voltage is at maximum set point +/-1%.

4.19.1 Voltage trip value tests

Starting from a voltage level equal to Un, this voltage is maintained a considerable time verifying that voltage averages calculated in each line are close to Un.


Then, the output voltage is increased up to a voltage equal to the Vnom_max setting less 1V. This level is maintained for 5 minutes.


After this, the output voltage is increased up to a voltage equal to the Vnom_max setting plus 1V. This level is maintained up to the inverter trips and the voltage average value is recorded.

The table below offers test results obtained. Where the test procedure above mentioned has been applied.

	Threshold		No Trip Test			Trip Test	
Test number	Value (V)	Voltage value (V)	Time measured (s)	Trip	Voltage settling value (V)	Trip	Trip voltage average value (V)
	Setting according to AS 60038 for Australia						
1	255.0	254.0	> 300	⊠ NO □ YES	256.0	□ NO ☑ YES	254.7
2	255.0	254.0	> 300	⊠ NO □ YES	256.0	□ NO ☑ YES	254.9
3	255.0	254.0	> 300	⊠ NO □ YES	256.0	□ NO ☑ YES	255.0
		Setting	according to	IEC 6003	88 for New Zea	land	
1	248.0	247.0	> 300	⊠ NO □ YES	249.0	□ NO 図 YES	247.9
2	248.0	247.0	> 300	⊠ NO □ YES	249.0	□ NO ☑ YES	247.9
3	248.0	247.0	> 300	⊠ NO □ YES	249.0	□ NO ☑ YES	248.0

After these test results, it is considered the most restrictive trip voltage average value for verifying the trip time. With this,

Page 122 of 171

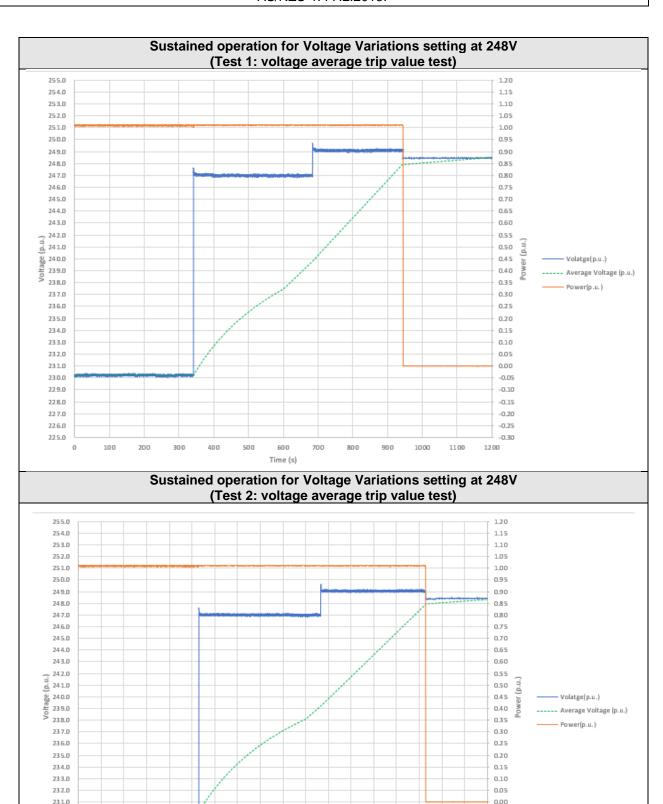
-0.05

-0.10

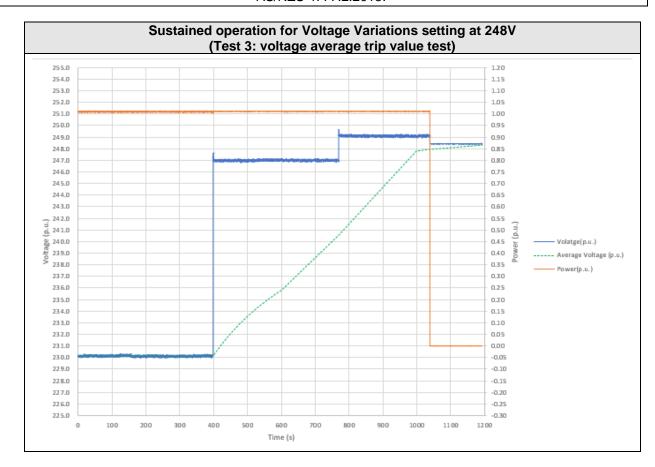
-0.15

-0.20

-0.30


23 0.0

22.9.0

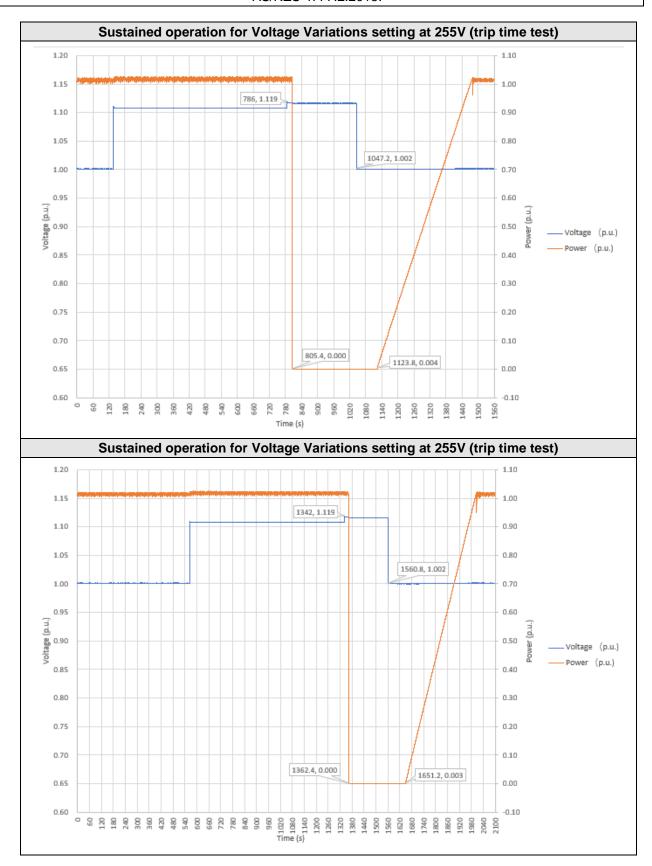

228.0

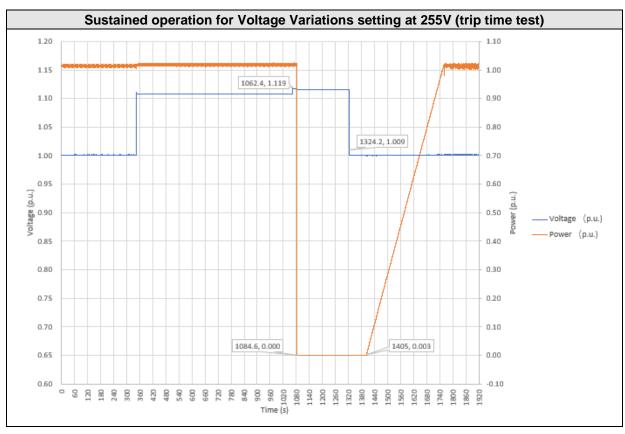
22.7.0

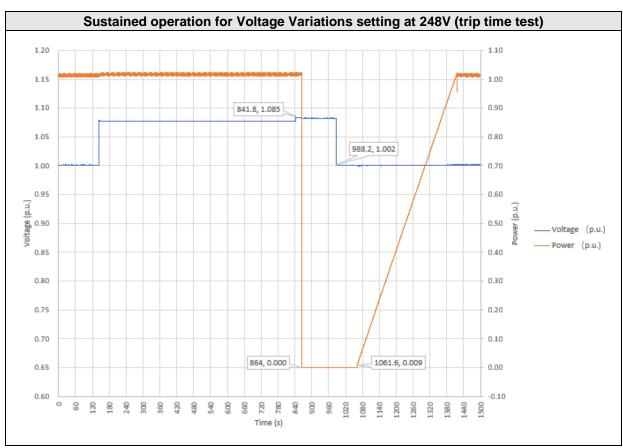
22.6.0 22.5.0 AS/NZS 4777.2:2015.

120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080

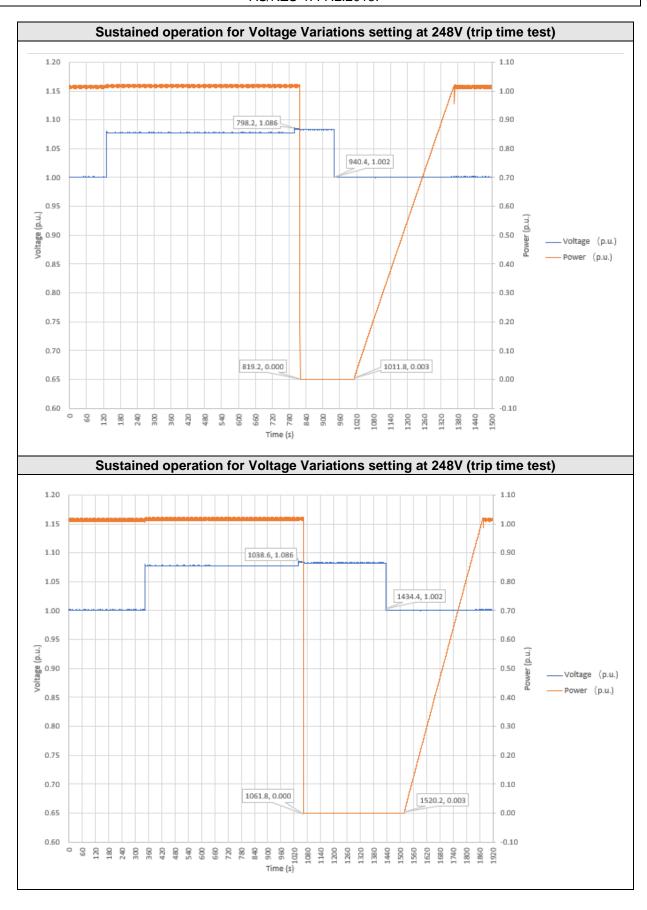
4.19.2 Trip time test


Starting from a voltage level equal to Un, this voltage is maintained a considerable time verifying that voltage averages calculated in each line are close to Un.


Then, the output voltage is increased up to a voltage equal to the Vnom_max setting calculated after the test 1. This level is maintained for 10 minutes.


After this, the output voltage is increased up to a voltage equal to the Vnom_max setting plus 2V. This level is maintained up to the inverter trips and the voltage average value is recorded. This trip time shall be less than 30 seconds.

The table below offers test results obtained, where the test procedure above mentioned has been applied.


Threshold	N	No Trip Test			Trip Tes	st .
Value (V)	Voltage value (V)	Time measured (s)	Trip	Voltage value (%Un)	Trip	Measured Trip time (s)
	Se	etting according	to AS 600	38 for Australia	1	
255	254.8	> 600	⊠ NO □ YES	256.8	□ NO 図 YES	19.4
255	254.8	> 600	⊠ NO □ YES	256.6	□ NO ☑ YES	20.4
255	254.8	> 600	⊠ NO □ YES	256.6	□ NO ☑ YES	22.2
	Sett	ing according to	IEC 60038	for New Zeala	nd	
248	247.8	> 600	⊠ NO □ YES	249.3	□ NO 図 YES	22.2
248	247.8	> 600	⊠ NO □ YES	249.3	□ NO ☑ YES	21.0
248	247.8	> 600	⊠ NO □ YES	249.3	□ NO ⊠ YES	23.2

SGS

Page 128 of 171

AS/NZS 4777.2:2015.

4.20 SUSTAINED OPERATION FOR FREQUENCY VARIATIONS

Sustained operation for frequency variations has been measured according to the Clause 7.5.3 of the standard.

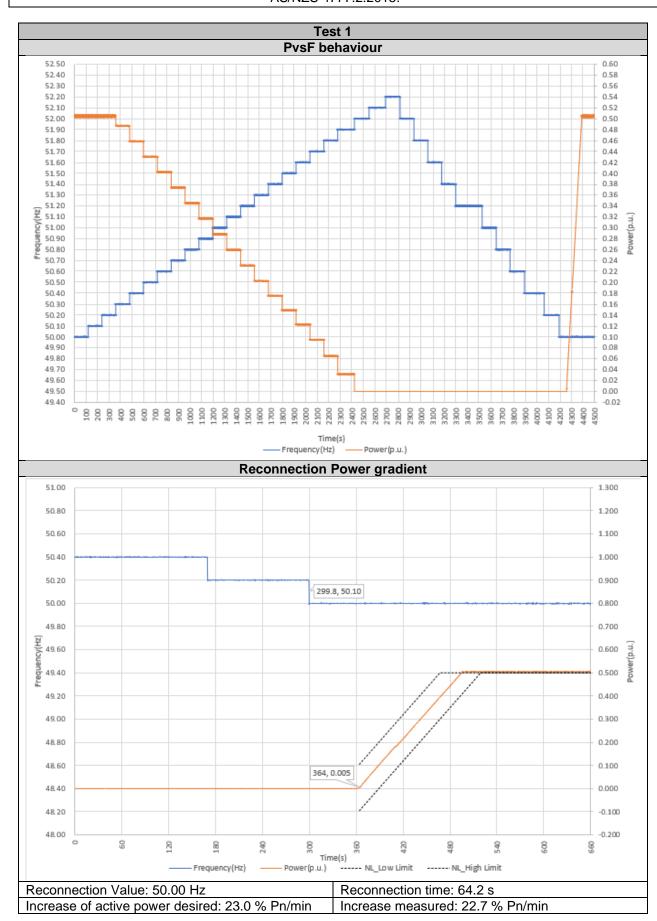
4.20.1 Response to an increase in frequency

According to the clause 7.5.3.1 the inverter must be able to comply with the following requirements:

- Test 1: Linear decrease of the active power up to disconnection in front of over frequency variations up to 52 Hz.
- Test 2: Hysteresis capability once over frequency variations are recovered up to 50.15Hz.

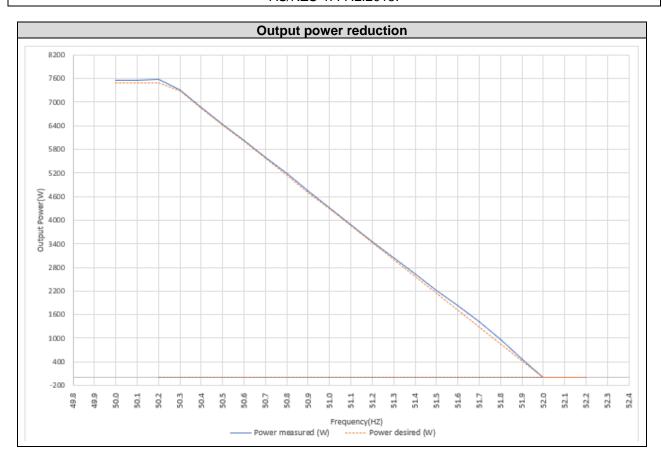
When the inverter's frequency returns to operate with f < 50.15 Hz, the active power must be recovered in both cases according to a power ramp limit and with a delay of at least 60 seconds.

Test results obtained are shown in the following tables and graphs.



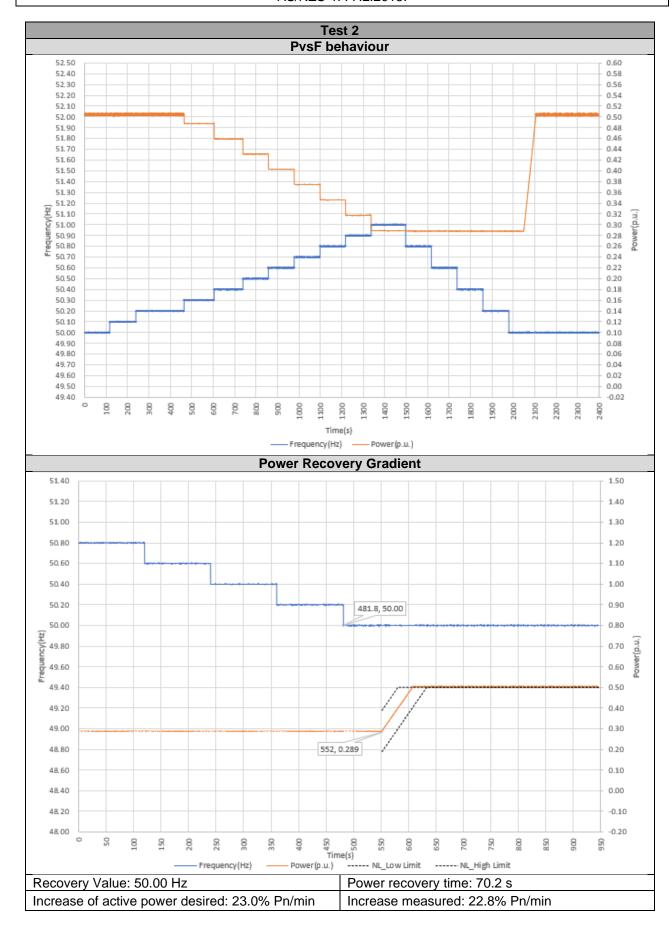
Page 129 of 171

AS/NZS 4777.2:2015.


		variations up to disconn		
%Pn	Frequency (Hz)	Power measured (W)	Power desired (W)	ΔP (%P _M)
	50.00	7568	7500	0.91
	50.10	7568	7500	0.91
	50.20	7571	7500	0.95
	50.30	7301	7286	0.20
	50.40	6876	6857	0.25
	50.50	6451	6429	0.30
	50.60	6028	6000	0.37
	50.70	5604	5571	0.43
	50.80	5178	5143	0.47
	50.90	4750	4714	0.48
	51.00	4321	4286	0.47
	51.10	3890	3857	0.44
	51.20	3460	3429	0.42
	51.30	3035	3000	0.47
	51.40	2628	2571	0.75
	51.50	2230	2143	1.16
50 %	51.60	1838	1714	1.65
	51.70	1420	1286	1.79
	51.80	973	857	1.54
	51.90	473	429	0.59
	52.00	-1	0	-0.01
	52.10	-1	0	-0.01
	52.20	-1	0	-0.01
	52.00	-1	0	-0.01
	51.80	-1	0	-0.01
	51.60	-1	0	-0.01
	51.40	-1	0	-0.01
	51.20	-1	0	-0.01
	51.00	-1	0	-0.01
	50.80	-1	0	-0.01
	50.60	-1	0	-0.01
	50.40	-1	0	-0.01
	50.20	-1	0	-0.01

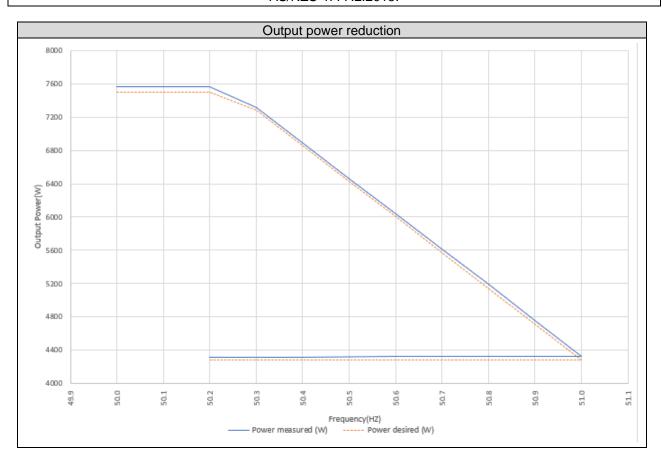
There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Page 131 of 171


Page 132 of 171

AS/NZS 4777.2:2015.

	Test 2. Hysteresis capability and active power recovery						
%Pn	Frequency (Hz)	Power measured (W)	Power desired (W)	ΔP (%P _M)			
	50.00	7570	7500	0.93			
	50.10	7569	7500	0.92			
	50.20	7570	7500	0.93			
	50.30	7315	7286	0.39			
	50.40	6889	6857	0.42			
	50.50	6463	6429	0.46			
	50.60	6040	6000	0.53			
50 %	50.70	5615	5571	0.58			
	50.80	5189	5143	0.62			
	50.90	4760	4714	0.61			
	51.00	4330	4286	0.59			
	50.80	4320	4286	0.46			
	50.60	4320	4286	0.46			
	50.40	4319	4286	0.44			
	50.20	4319	4286	0.44			


There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

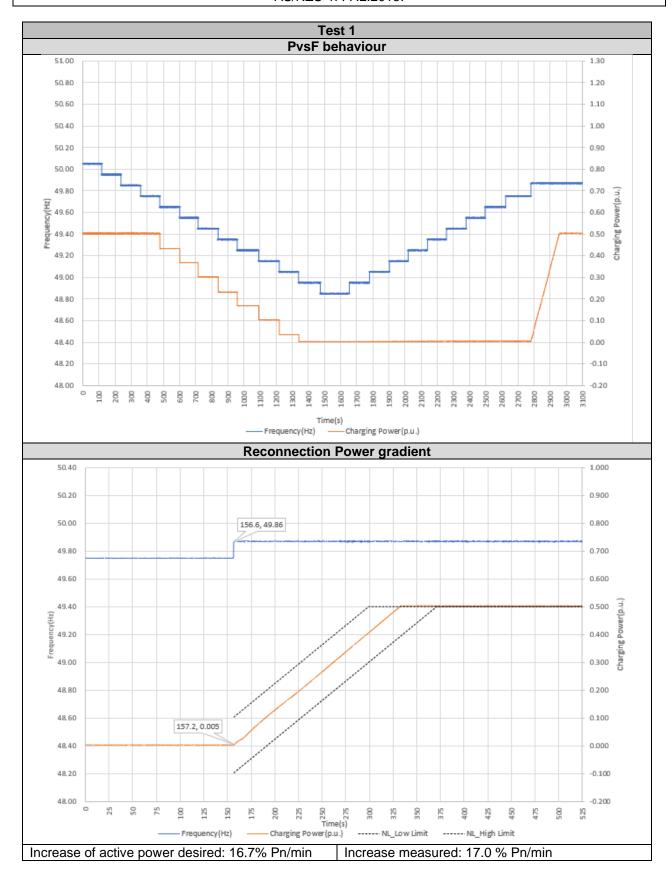
Test results are graphically shown in following pages.

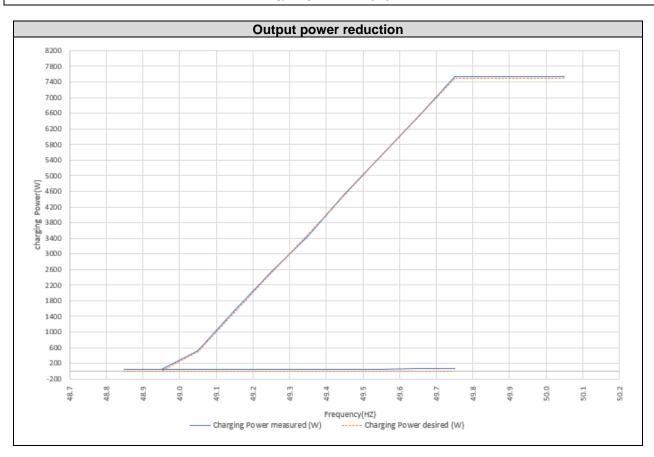
Page 134 of 171

4.20.2 Response to a decrease in grid frequency

This requirement applies only to inverters with energy storage. According to the clause 7.5.3.2, the inverter must be capable of supplying rated power between 49 Hz and 49.75 Hz for Australia.

- Test 1: Linear decrease of the active power up to disconnection in front of under frequency variations up to 49.0 Hz.
- Test 2: Hysteresis capability once over frequency variations are recovered up 49.85Hz.

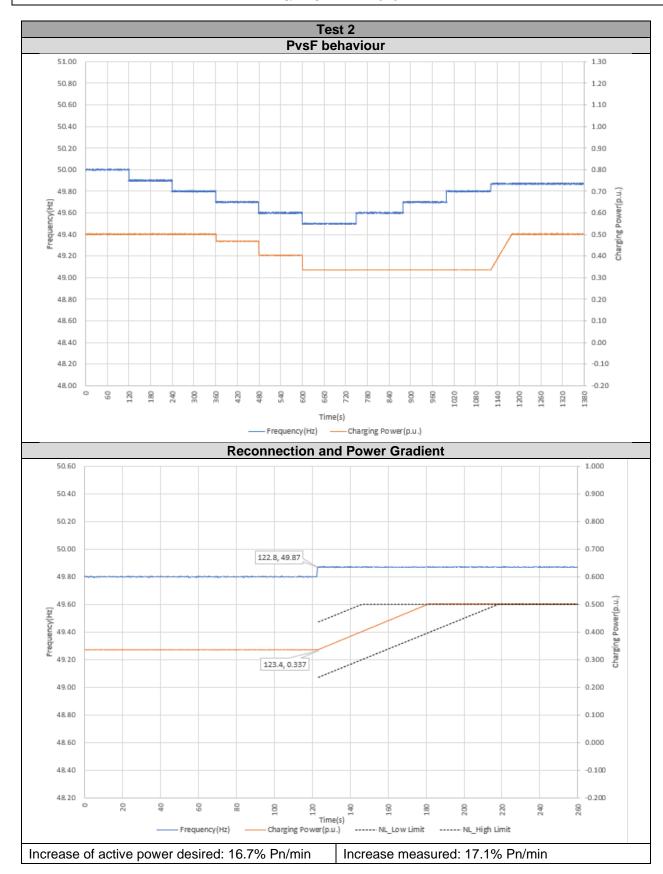

When the inverter's frequency returns to operate with f >49.85 Hz, the active power must be recovered in both cases according to a power ramp limit and with a delay of at least 60 seconds.


Test results obtained are shown in the following tables and graphs.

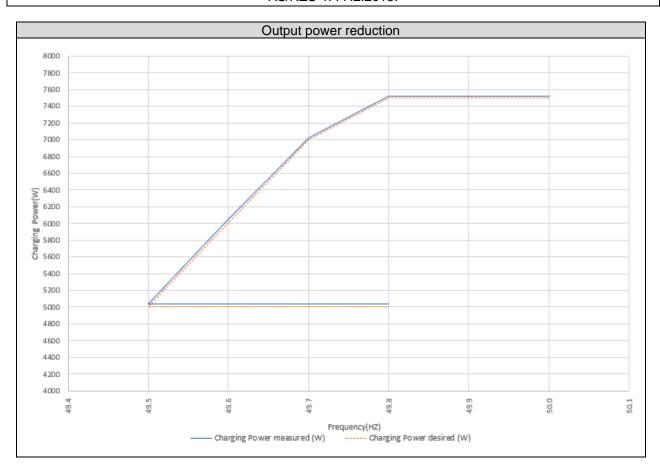
Te	est 1. Under frequenc		nnection and active power	r recovery
%Pn	Frequency (Hz)	Charging Power measured (W)	Charging Power desired (W)	ΔP (%P _M)
	50.05	7547	7500	0.63
	49.95	7547	7500	0.63
	49.85	7540	7500	0.53
	49.75	7540	7500	0.54
	49.65	6494	6500	-0.08
	49.55	5517	5500	0.22
	49.45	4531	4500	0.41
	49.35	3469	3500	-0.41
	49.25	2526	2500	0.34
	49.15	1542	1500	0.55
50 %	49.05	518	500	0.23
50 %	48.95	38	0	0.50
	48.85	35	0	0.47
	48.95	37	0	0.50
	49.05	40	0	0.53
	49.15	43	0	0.57
	49.25	46	0	0.61
	49.35	49	0	0.65
	49.45	51	0	0.68
	49.55	54	0	0.72
	49.65	57	0	0.76
	49.75	60	0	0.79

There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M) .

SGS



Test 2. Hysteresis capability and active power recovery						
%Pn	Frequency (Hz)	Power measured (W)	Power desired (W)	ΔP (%P _M)		
	50.00	7526	7500	0.35		
	49.90	7526	7500	0.35		
	49.80	7526	7500	0.35		
	49.70	7025	7000	0.33		
50 %	49.60	6048	6000	0.64		
	49.50	5035	5000	0.47		
	49.60	5034	5000	0.45		
	49.70	5037	5000	0.49		
	49.80	5039	5000	0.51		


There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Test results are graphically shown in following pages.

Page 139 of 171

4.21 DISCONNECTION ON EXTERNAL SIGNAL

The automatic disconnection device shall incorporate the ability to disconnect on an external signal.

If an external signal or demand response 'DRM 0' condition is asserted, the automatic disconnection device shall operate within 2 s.

Refer to point 4.12.1 for details.

4.22 CONNECTION AND RECONNECTION PROCEDURE

According to the clause 7.7 of the standard, voltage and frequency conditions for allowing the connection or reconnection of the equipment to the grid are as follows:

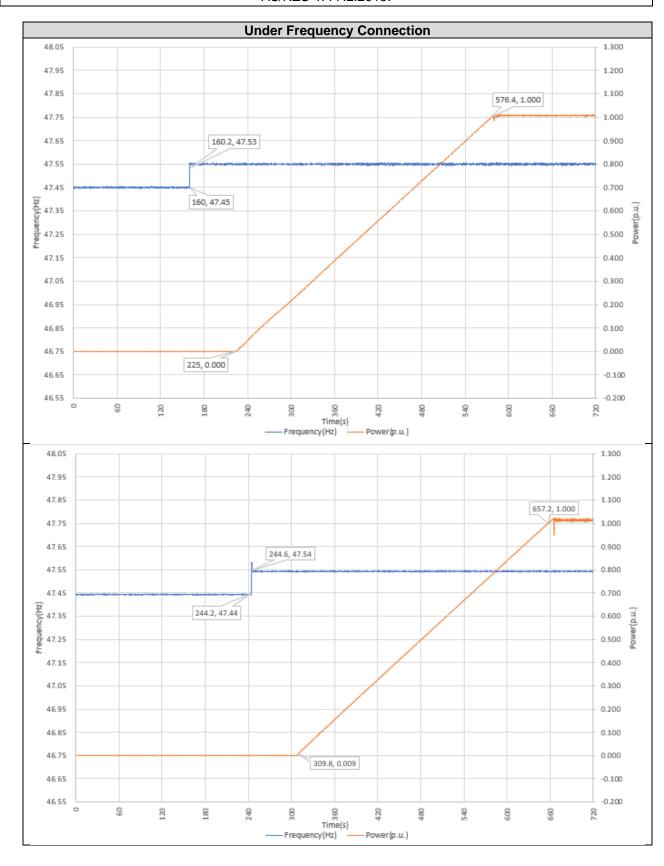
- The voltage of the grid has to be maintained within the limits of AS 60038, for Australia, for at least 60 s.
- The frequency of the grid has to be maintained within the range 47.5 Hz to 50.15 Hz for at least 60 s.

4.22.1 Frequency Connection

Test results are offered in the following tables:

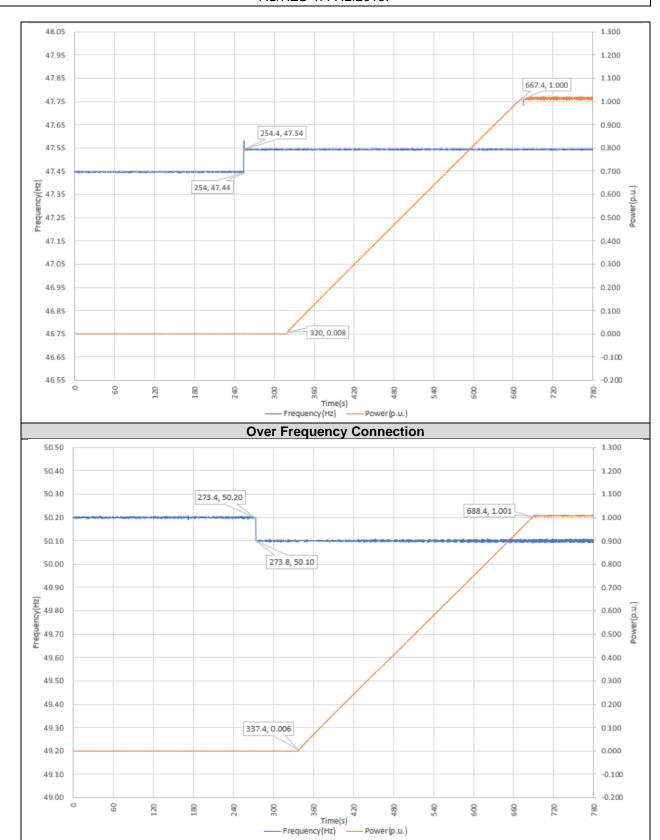
Frequency	No Connection Test			Connection Test		
Connection Value Limit (Hz)	Frequency value (Hz)	Time measured (s)	Connection	Frequency value (Hz)	Connection	Time measured (s)
F ≥ 47.50	47.45	>120	⊠ NO □ YES	47.55	□ NO ☑ YES	64.8
F ≥ 47.50	47.45	>120	⊠ NO □ YES	47.55	□ NO ⊠ YES	65.2
F ≥ 47.50	47.45	>120	⊠ NO □ YES	47.55	□ NO ⊠ YES	65.6
F ≤ 50.15	50.20	>120	⊠ NO □ YES	50.10	□ NO ⊠ YES	63.6
F ≤ 50.15	50.20	>120	⊠ NO □ YES	50.10	□ NO ⊠ YES	65.8
F ≤ 50.15	50.20	>120	⊠ NO □ YES	50.10	□ NO ☑ YES	65.6

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start connection following an adjustable Ramp Rate. In this case, the adjusted gradient has been an increasing rate of 16.7%Pn per minute.

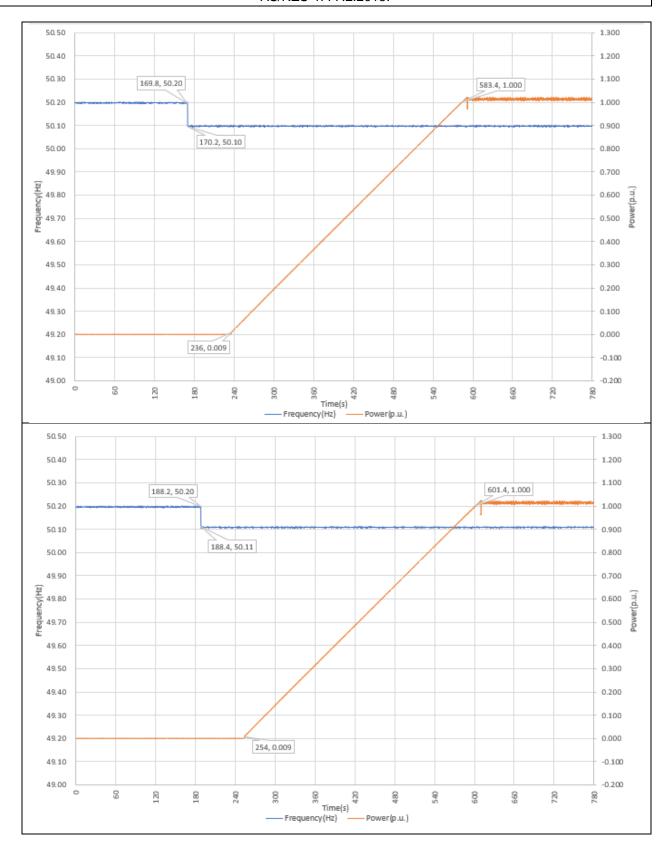

Frequency Connection Value Limit	Gradient (ΔP) desired (%Pn/min)	Gradient measured (%P₅/min)
F ≥ 47.50 Hz	16.7	17.1/17.3/17.3
F ≤ 50.15 Hz	16.7	17.0/17.3/17.3

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.



Page 141 of 171



Page 142 of 171

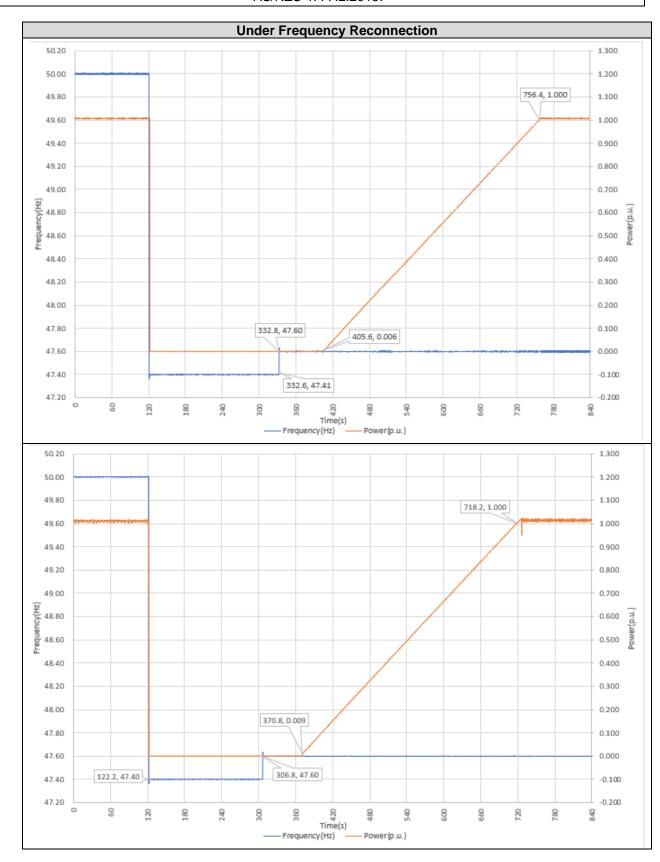
Page 143 of 171

4.22.2 Frequency Reconnection

Test results are offered in the following tables:

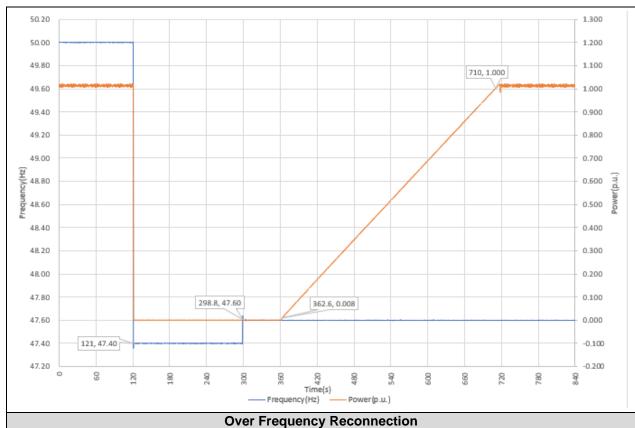
Frequency	No	Reconnection	on Test	R	econnection Tes	st
Reconnection Nalue Limit	Frequenc y value (Hz)	Time measure d (s)	Reconnectio n	Frequenc y value (Hz)	Reconnectio n	Time measure d (s)
F ≥ 47.50 Hz	47.40	>120	⊠ NO □ YES	47.60	□ NO ⊠ YES	72.8
F ≥ 47.50 Hz	47.40	>120	⊠ NO □ YES	47.60	□ NO ☑ YES	64.0
F ≥ 47.50 Hz	47.40	>120	⊠ NO □ YES	47.60	□ NO ⊠ YES	63.8
F ≤ 50.15 Hz	50.25	>120	⊠ NO □ YES	50.10	□ NO ⊠ YES	64.0
F ≤ 50.15 Hz	50.25	>120	⊠ NO □ YES	50.10	□ NO ☑ YES	63.8
F ≤ 50.15 Hz	50.25	>120	⊠ NO □ YES	50.10	□ NO ⊠ YES	64.0

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start reconnection following an adjustable Ramp Rate. In this case, the adjusted gradient has been an increasing rate of 16.7%Pn per minute.


Frequency Reconnection Value Limit	Gradient (ΔP) desired (%P _n /min)	Gradient measured (%P _n /min)
F ≥ 47.50 Hz	16.7	17.0/17.3/17.3
F ≤ 50.15 Hz	16.7	17.0/17.3/17.3

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.




Page 145 of 171

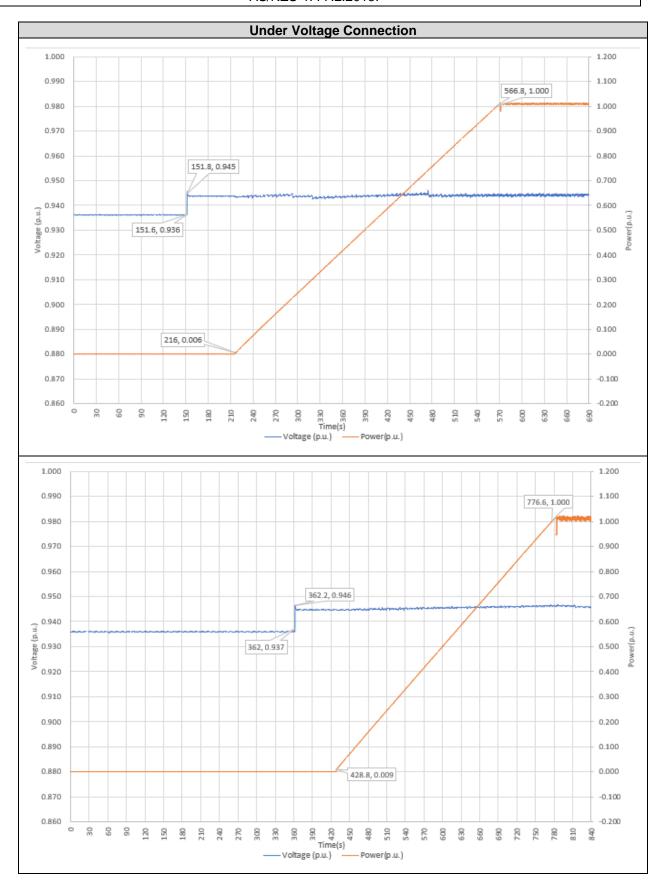

Page 146 of 171

Page 147 of 171

4.22.3 Voltage Connection

Test results are offered in the following tables:

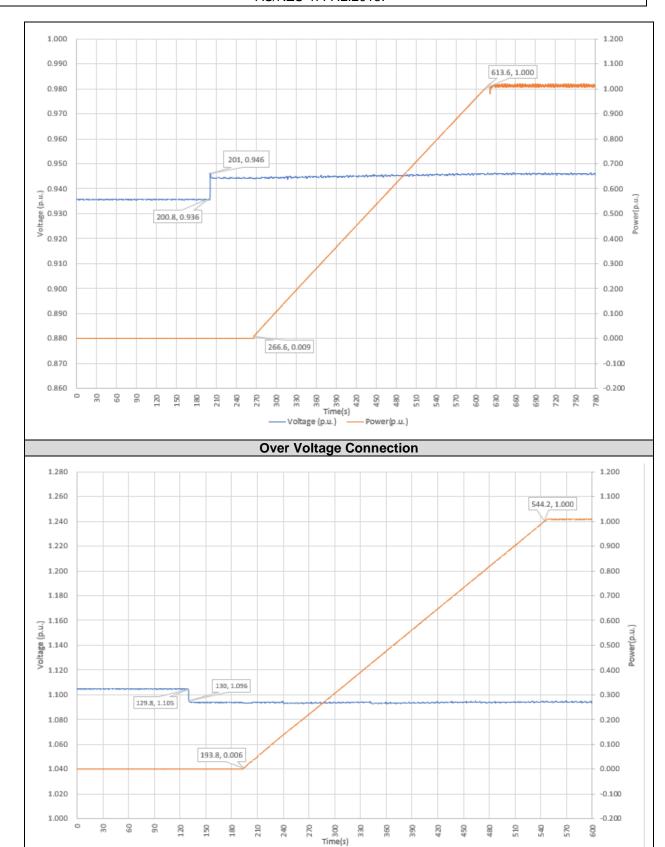
Voltage	N	o Connection	Test	Connection Test		
Voltage Connection Value Limit	Voltage value (%Un)	Time measured (s)	Connection	Voltage value (%Un)	Connection	Time measured (s)
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO □ YES	64.2
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO ⊠ YES	66.6
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO ⊠ YES	65.6
V ≤ 110.0% Un	110.5%	>120	⊠ NO □ YES	109.4%	□ NO ☑ YES	63.8
V ≤ 110.0% Un	110.5%	>120	⊠ NO □ YES	109.4%	□ NO ⊠ YES	65.2
V ≤ 110.0% Un	110.5%	>120	⊠ NO □ YES	109.4%	□ NO ⊠ YES	65.0


The standard states that the tolerance limit for voltage connection values is \pm 2 V, which is a 0,8% Un over 230 V, the reference voltage considered by the standard. So, 0.8% Un is the allowed tolerance to be considered for voltage connection value tests.

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start connection following an adjustable Ramp Rate. The following table shows the programmed gradient for the different reconnections:

Voltage Connection Value Limit	Gradient (ΔP) desired (%P _n /min)	Gradient measured (%P _n /min)
V ≥ 94.0% Un	16.7	17.0/17.3/17.3
V ≤ 110.0% Un	16.7	17.0/17.3/17.3

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.


Test results are graphically shown in following pages.

Page 150 of 171

AS/NZS 4777.2:2015.

----- Voltage (p.u.)

Power(p.u.)

Page 151 of 171

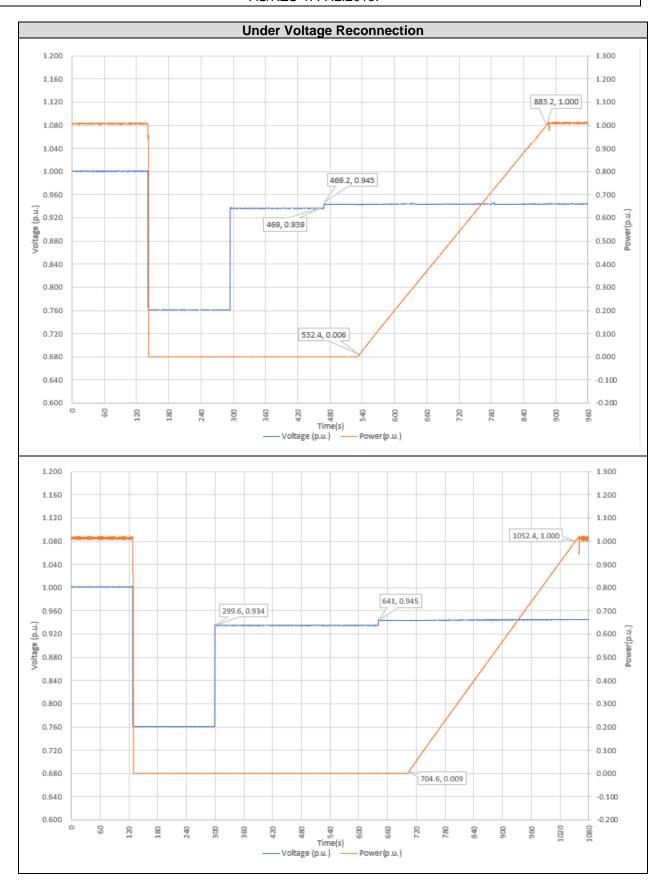
4.22.4 Voltage Reconnection

Test results are offered in the following tables:

Voltage	No Reconnection Test Reconnection Test			est		
Voltage Reconnection Value Limit	Voltage value (%Un)	Time measured (s)	Reconnectio n	Voltage value (%Un)	Reconnectio n	Time measured (s)
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO ☑ YES	63.2
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO ⊠ YES	63.6
V ≥ 94.0% Un	93.6%	>120	⊠ NO □ YES	94.4%	□ NO ⊠ YES	64.2
V ≤ 110.0% Un	110.6%	>120	⊠ NO □ YES	109.2%	□ NO ⊠ YES	64.2
V ≤ 110.0% Un	110.6%	>120	⊠ NO □ YES	109.2%	□ NO ⊠ YES	63.4
V ≤ 110.0% Un	110.6%	>120	⊠ NO □ YES	109.2%	□ NO ⊠ YES	63.4

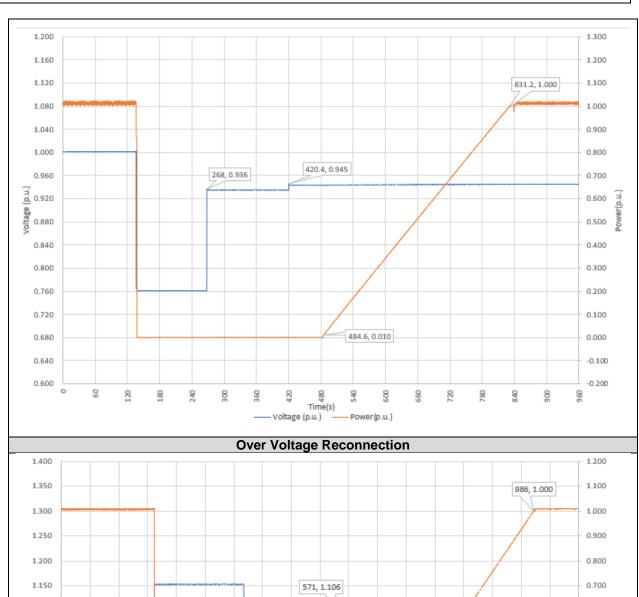
The standard states that the tolerance limit for voltage reconnection values is \pm 2 V, which is a 0,8% Un over 230 V, the reference voltage considered by the standard. So, 0.8% Un is the allowed tolerance to be considered for voltage reconnection value tests.

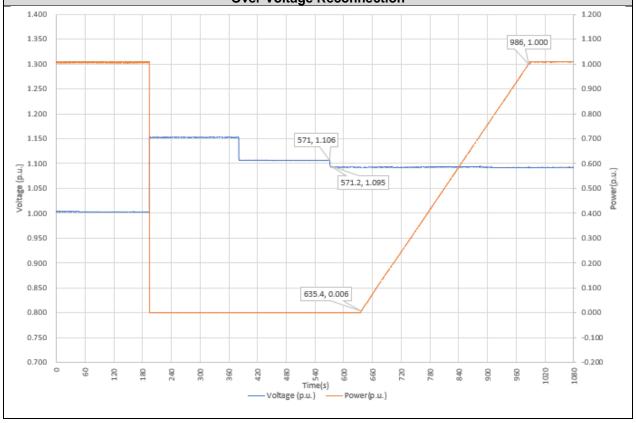
In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start reconnection following an adjustable Ramp Rate. The following table shows the programmed gradient for the different reconnections:

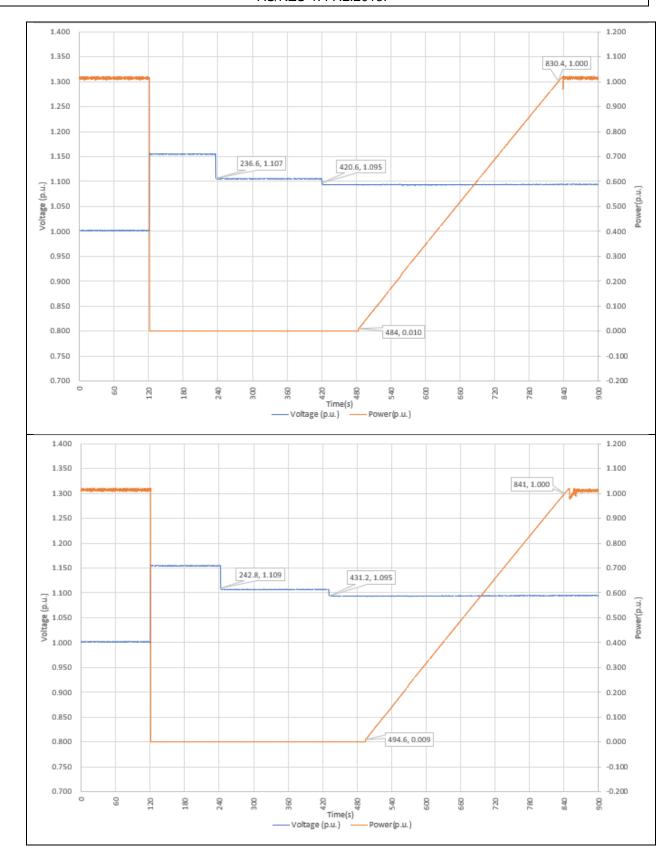

Voltage Reconnection Value Limit	Gradient (ΔP) desired (%P _n /min)	Gradient measured (Pո/min)
V ≥ 94.0% Un	≤ 100.0%	17.0%/17.3/17.3
V ≤ 110.0% Un	≤ 100.0%	17.0%/17.3/17.3

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.




Page 153 of 171


Page 154 of 171

Page 155 of 171

Page 156 of 171

AS/NZS 4777.2:2015.

4.23 SECURITY OF PROTECTION SETTINGS

The inverter complies with the following requirements according to Clause 7.8 of the standard:

- a) The inverter has been checked by inspection that changes to the internal setting shall require the use of a tool and special instructions not provided to unauthorized personnel.
- b) The installer-accessible settings of the automatic disconnection device are capable of being adjusted within the limits specified in Clause 7.5 of the standard.
- c) The manufacturer settings of the automatic disconnection device, specified in Clause 7.4 of the standard, are secured against changes.

4.24 MULTIPLE INVERTER COMBINATION

According to the clause 8 of the standard, Inverter energy systems are often comprised of multiple inverters used in combination to provide the desired inverter energy capacity or to ensure that voltage balance is maintained in multiple phase connections to the grid.

The inverter under testing doesn't have any of these functions incorporated in his control system, so this point is not applicable.

4.25 INVERTER MARKING AND DOCUMENTATION

The inverter is in compliance with marking and documentation requirements of IEC 62109-1, IEC 62109-2, and Clause 9 according AS/NZS 4777.2:2015

- IEC 62109-1 and IEC 62109-2: test report nº BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.
- IEC 62040-1: test report no BL-DG2060127-B02 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd.

According to points 9.2.4 and 9.2.5 the unit shall be marked with the following external or auxiliary systems if those are required to comply with the requirements from the standard:

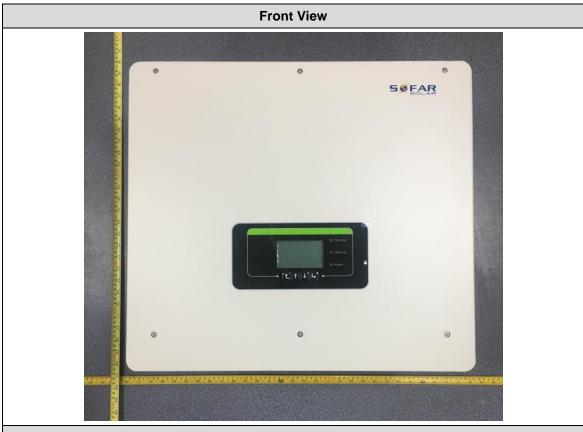
External equipment requirement	Required (Yes or No?)
Isolation transformer	No
RCD / earth fault detection	No
External automatic disconnector (DRM0)	No
External device to enable extra DRM modes	No

	AS/NZS 4777.2 : 2	2015	
Clause	Requirement - Test	Result - Remark	Verdict
9	INVERTER MARKING AND DOCUMENTATION	N	Р
9.1	General		Р
	The inverter shall comply with the marking and documentation requirements of IEC 62109-1 and IEC 62109-2, as varied by this Clause (9).		P
	All markings and documentation shall be in the English language.		Р
9.2	Marking		Р
9.2.1	General		Р
	The following variations apply to the marking requirements of IEC 62109-1 and		Р
	IEC 62109-2:		
	(a) Inverters that are designated for use in inverter energy systems incorporating energy sources other than PV arrays or batteries shall bear additional or alternative markings appropriate to the energy source.		P
	(b) Inverters that are designated for use in closed electrical operating areas shall be marked with a warning stating that they are not suitable for installation in households or areas of a similar type or use (i.e. domestic).	Not used in closed electrical operationg areas.	N/A
9.2.2	Equipment ratings		Р
	The inverter shall be marked with its ratings and the ratings of each port, as specified in Table 15. Only those ratings that are applicable to the type of inverter are required.		Р

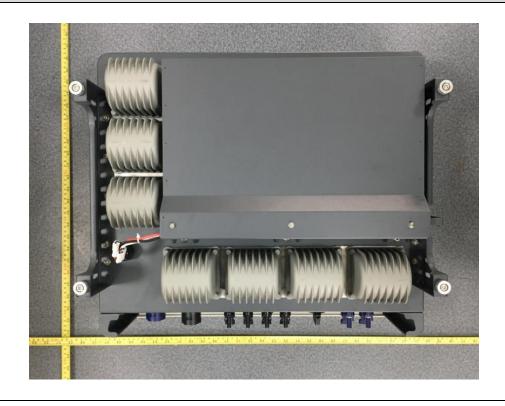
	AS/NZS 4777.2 : 2	015	
Clause	Requirement - Test The ratings shall be plainly and permanently marked on the inverter, in a location that is clearly visible after installation.	Result - Remark	Verdict
9.2.3	Ports		Р
	Each port shall be marked with its classification and indicate whether a.c or d.c. voltage as appropriate.		Р
	Typical classifications include the following:		Р
	(a) PV (photovoltaic).		Р
	(b) Wind turbine.		N/A
	(c) Energy storage.		N/A
	(d) Battery.		P
	(e) Generator.		N/A
	(f) Grid-interactive.		P
	(g) Stand-alone.		Р
	(h) Communications (type).		Р
	(i) DRM.		Р
	(j) Load.		Р
9.2.4	External and ancillary equipment		N/A
	If the inverter requires external or ancillary equipment for compliance with this Standard, the requirement for any such equipment shall be marked on the inverter along with the following or an equivalent statement: 'Refer to the installation instructions for type and ratings' or symbol.		N/A
	Any external or ancillary equipment shall be marked in accordance with this Clause (9).		N/A
9.2.5	Residual current devices (RCDs)		Р
	Inverter energy systems used with PV array systems require residual current detection in accordance with IEC 62109-1 and IEC 62109-2. The requirements can be met by the installation of a suitably rated RCD external to the inverter or by an RCMU integral to the inverter.	An RCMU integral to the inverter used	Р
	Where an external RCD is required, the inverter shall be marked with a warning along with the rating and type of RCD required. The warning shall be located in a prominent position and written in lettering at least 5 mm high. It shall contain the following or an equivalent statement:		N/A
	WARNING: AN RCD IS REQUIRED ON THE [NAME] PORTS OF THE INVERTER		N/A

	AS/NZS 4777.2 : 2	015	
Clause	Requirement - Test	Result - Remark	Verdict
	If the inverter energy system requires a Type B RCD, the inverter shall be marked with a warning. The warning shall be located in a prominent position and written in lettering at least 5 mm high. It shall contain the following:		N/A
	WARNING: A TYPE B RCD IS REQUIRED ON THE [NAME] PORTS OF THE INVERTER		N/A
9.2.6	Demand response modes		Р
	The demand response modes supported by the inverter should be permanently marked on the name plate or on a durable sticker located on or near the demand response interface port to indicate the demand response modes of which the unit is capable.	DRM 0, DRM1-8	Р
	Figure 9 illustrates an acceptable form of marking. If this form of marking is used, each box shall contain a tick or a cross (if the inverter has that capability) or remain blank (if it does not have that capability). Alternatively, only the modes supported may be marked.		P
	If the physical interface is a terminal block, then—	Terminal block used	Р
	(a) the terminals shall be engraved or otherwise durably marked; or		Р
	(b) a permanent label with 'DRM Port' shall be affixed near the terminal block.		Р
	The marking shall indicate which terminal corresponds to which demand response mode.		Р
	The range of markings is indicated against Pins 1 to 6 in Table 7.		Р
9.3	Documentation		Р
9.3.1	General		Р
	The documentation supplied with the inverter shall provide all information necessary for the correct installation, operation and use of the system and any required external devices including information specified in Clause 9.2.		P
	All inverters, including those intended for use in systems incorporating energy sources other than PV arrays or batteries, shall comply with the documentation requirements of IEC 62109-1 and IEC 62109-2.		P
9.3.2	Equipment ratings		Р
	The documentation supplied with the inverter shall state the ratings of the inverter and the ratings for each port, as specified in Table 16. Only those ratings that are applicable to the type of inverter are required.		Р

	AS/NZS 4777.2 : 2015				
Clause	Requirement - Test	Result - Remark	Verdict		
	For equipment with rated current greater than 16 A per phase, additional documentation requirements apply. See Clause 5.7.		Р		
9.3.3	Ports		Р		
	In addition to the requirements of Clause 9.3.2, the documentation supplied with the inverter shall state the following for each port, as a minimum:		Р		
	(a) Means of connection.		Р		
	(b) For pluggable equipment type B, the type of matching connectors to be used.		Р		
	(c) External controls and protection requirements.		Р		
	(d) Explanation of terminals or pins used for connection including polarity and voltage.		Р		
	(e) Tightening torque to be applied to terminals.		N/A		
	(f) Instructions for protective earthing.		Р		
	(g) Instructions for connection of loads and installation of RCD protection to stand-alone ports.		N/A		
	(h) The decisive voltage class (DVC).		Р		
9.3.4	External and ancillary equipment		N/A		
	Where an inverter or multiple inverter combinations requires external or ancillary equipment for compliance with this Standard, the documentation shall—		N/A		
	(a) state the requirement for any such equipment;		N/A		
	(b) provide sufficient information to identify the external or ancillary equipment, either by manufacturer and part number or by type and rating; and		N/A		
	(c) specify assembly, location, mounting and connection requirements.		N/A		
9.3.5	RCDs		N/A		
	Where an external RCD is required, the following or an equivalent statement shall be included in the documentation: 'External RCD Required'. The documentation shall also state the rating and type of RCD required and provide instructions for the installation of the RCD.	An RCMU integral to the inverter used	N/A		
9.3.6	Multiple mode inverters	Grid-connected mode or standalone mode	Р		



Page 161 of 171

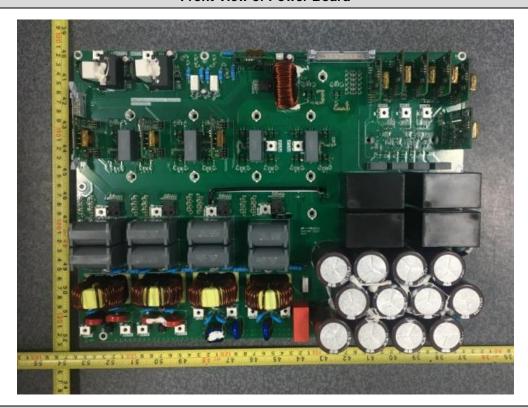

	AS/NZS 4777.2 : 2	015	
Clause	Requirement - Test	Result - Remark	Verdict
	Where the inverter is capable of multiple mode operation, the documentation shall include the following:		Р
	(a) Ratings and means of connection to each source of supply to the inverter or output from the inverter.		Р
	(b) Any requirements related to wiring and external controls, including the method of maintaining neutral continuity within the electrical installation to any stand-alone ports as required.		P
	(c) Disconnection means and isolation means.		N/A
	(d) Overcurrent protection needed.		N/A
9.3.7	Multiple inverter combinations	No in such used	N/A
	Where an inverter has been tested for use in a multiple inverter combination as per Clause 8, the documentation shall include the following:		N/A
	(a) Valid combinations of inverters.		N/A
	(b) Installation instructions for correct operation as a multiple inverter combination.		N/A

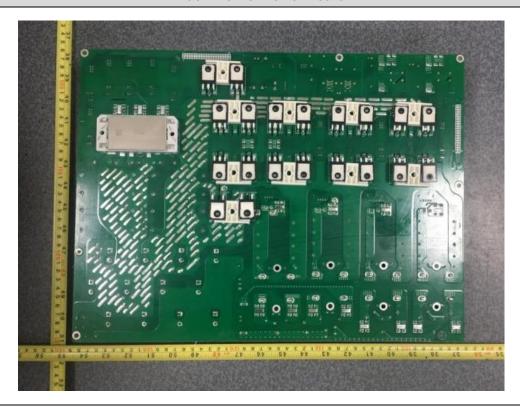
5 PICTURES

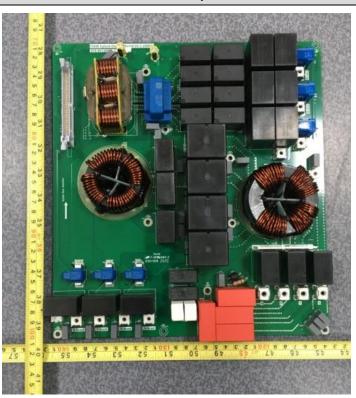
Refer to the pictures below for details.

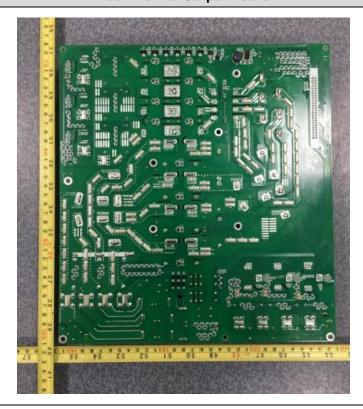
Page 163 of 171

AS/NZS 4777.2:2015.


Side View

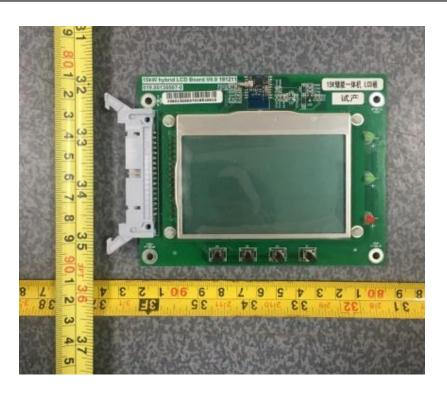

Connectors

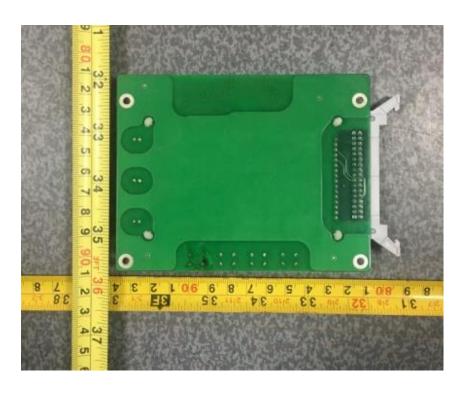

Front View of Power Board


Back View of Power Board

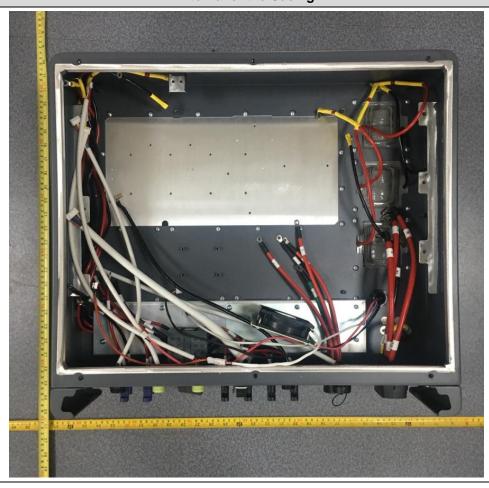
Front View of Output Board

Back View of Output Board

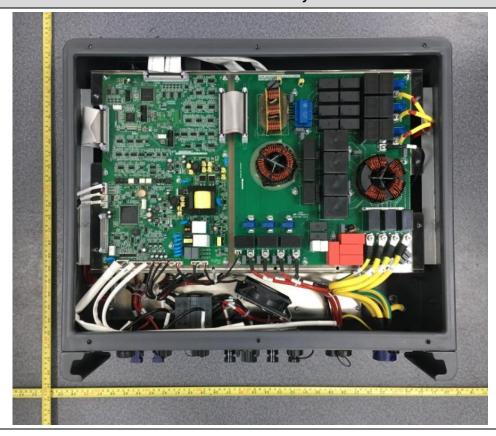

Front View of Control Board

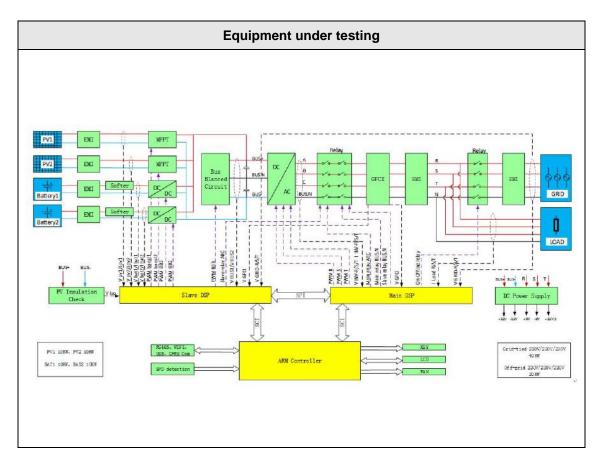

Back View of Control Board

Front view of Display Screen


Back view of Display Screen

Ground Wire


Internal of the Casing


Devices of Front Layer

6 ELECTRICAL SCHEMES

-----END OF REPORT-----